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Abstract. In an incomplete financial model we consider a traded asset with stochastic exponential

price driven by a general Itô process and an investor with log-utility preferences who, in addition to

an initial capital, receives units of a non-traded endowment at maturity. Using duality techniques

we derive a “localized” fourth-order expansion of the (primal) value function for a small number of

units held in the non-traded endowment, ϵ, and identify the corresponding nearly optimal “wealth”

process that allows for matching the value function up to that order. Using the above we also provide

a result in the context of utility-based pricing by expanding the already well-established quadratic

approximation of the utility-based certainty equivalent w.r.t. ϵ, up to fourth order for the case of

log-utility. In addition we examine the behavior of both the value function expansions (quadratic

and fourth order) and the respective nearly optimal wealth processes as the time horizon T tends

to infinity. Particularly we show that the former remain within the correct order, but not for an

arbitrary choice of bounding constants, all the way as T → ∞. In turn the asymptotic behavior

described above for the infinite horizon setting is inherited by the log-utility certainty equivalent,

extending the previous results for arbitrarily large maturities.
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Introduction

Discussion. A central problem in financial economics involves an investor allocating initial wealth

across a financial market with the goal of maximizing the expected utility of terminal wealth. This

optimal investment problem in continuous-time settings was analyzed by Merton [Mer69; Mer71], who

used dynamic programming techniques to derive a non-linear partial differential equation characterizing

the value function. For various utility functions, Merton obtained explicit closed-form solutions.

A major conceptual advancement came with the development of the theory of equivalent martin-

gale measures by Ross [Ros76], Harrison and Kreps [HK79], and Harrison and Pliska [HP81], which
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enabled the application of martingale and duality methods to such optimization problems. Under

the assumption of market completeness—where the set of equivalent martingale measures reduces to

a singleton—this duality approach was further developed by Pliska [Pli86]; Karatzas, Lehoczky, and

Shreve [KLS87]; and Cox and Huang [CH89; CH91]. The more intricate case of incomplete markets

was addressed in foundational works by He and Pearson [HP91a; HP91b], and by Karatzas, Lehoczky,

Shreve, and Xu [Kar+91]. Building on these contributions, Kramkov and Schachermayer [KS99; KS03]

established minimal conditions on both the utility function and the financial market under which the

core results of the theory remain valid.

In the context of incomplete markets, a natural extension of the problem involves maximizing ex-

pected utility when the investor receives additional exogenous random endowments. Typical examples

are the pension funds whose endowment is the difference between the contributions and the liabilities

and the institutional investors with existing non-tradeble placements. In complete markets, endow-

ments (processes or simple random payoffs at a certain point in time) can be perfectly replicated using

traded assets, effectively reducing the problem to one with augmented initial wealth and no random

endowment. However, as noted among others in [HH07], real-world markets are typically incomplete,

with perfect replication impeded by frictions such as transaction costs, non-traded assets, and portfolio

constraints. In such settings, assets are associated with a range of arbitrage-free prices, and the risk of

holding them cannot be fully hedged through market trading alone.

Consequently, in incomplete markets, transforming the problem with random endowments into an

equivalent problem without them is generally a challenging one. Analyzing the value function and

deriving closed-form solutions is undeniably significantly more difficult. Notable contributions ad-

dressing this challenge include Cvitanić, Schachermayer, and Wang [CSW01], who characterized the

optimal terminal wealth in a general semimartingale model via a dual formulation. [KŽ03] extends

this framework to account for intertemporal consumption. Hugonnier and Kramkov [HK04] treated

both the initial capital and the quantity of random endowments as optimization variables, allowing for

unbounded endowments. Also, [OŽ09] studies the case of unbounded random endowments and utility

functions defined over the entire real line, providing necessary and sufficient conditions for the absence

of utility-based arbitrage and the existence of a solution to the primal problem.

Modelling optimal investment under exogenously given endowment processes encounters also another

technique challenge. Typically, investment horizon of institutional investors and pension funds do not

have a priori time horizon and similarly the endowment process does not have a certain time at which

it vanishes. This means that the optimization problem of such an investor should not be constrained

by a (deterministic) finite horizon. Rather, the investor’s optimization objective should guarantee

time consistency for each future horizon taking also into account the effect of the endowment process.

This problem is generally hard to tackle, although it is a more appropriate setting for many cases of

institutional investors.

Contributions. In an incomplete financial market, we consider a traded asset whose price follows

a stochastic exponential driven by a general Itô process and an investor with log-utility preferences
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who, in addition to an initial capital, receives units of a non-traded endowment process. Closed-form

solutions to the associated utility maximization problem are generally unavailable due to the highly non-

linear nature of the corresponding stochastic control PDE. To address this, we assume that the payoff

from the non-traded endowment is small relative to the investor’s total wealth. This approximation

approach is usually encountered in the related strand of literature of utility-based pricing a non-traded

contingent claim. Therein, an economically appealing choice is the utility-indifference approach put

forward by Hodges and Neuberger [HN89] as well as Davis, Panas and Zariphopoulou [DPZ93]. For

a given utility function, this method determines a “fair” price by equating the investor’s maximal

expected utility with and without the non-traded claim. A comprehensive overview of this approach

is provided in [HH07].

Within this framework, our contributions to the literature are as follows:

(1) Fourth-order expansion and nearly optimal strategies:

Using duality techniques, we derive a “localized” fourth-order expansion of the primal value

function with respect to a small number of units ϵ in the non-traded endowment. We then

identify the corresponding nearly optimal wealth process in the spirit of Henderson [Hen02],

allowing the value function to be matched up to this order. Leveraging the semimartingale

characteristics of the return process, we explicitly construct the associated nearly optimal

strategy. To the best of our knowledge this is the first result in this direction, extending

similar established approximations of quadratic nature to fourth order. Interestingly, the nearly

optimal wealth process underpinning this expansion can also be characterized via a Kunita-

Watanabe projection, mirroring the case of second-order expansions (cf. [KS06]). This also

leads to a novel result in the context of utility-based pricing, since we extend the well-known

quadratic approximation of the utility-based certainty equivalent in ϵ to fourth order in the

log-utility case.

(2) Long-horizon asymptotics:

We also study the robustness of our results as the investment horizon T tends to infinity.

Specifically, we examine the behavior of both the quadratic and fourth-order expansions of the

value function and the associated nearly optimal wealth processes. We show that the expansions

remain within the correct order, but not for an arbitrary choice of bounding constants, all the

way as T → ∞. The long-term behavior of the certainty equivalent is then derived as a

consequence, generalizing previous results to arbitrarily large maturities.

These results have three key implications. First they allow for a better understanding of log-optimal

behavior in the incomplete setting, under the presence of a non-traded endowment. This stems from

the fact that the nearly optimal strategy producing the quadratic approximation of the value function is

optimal; assuming market completeness. This enables valuable insights on how market incompleteness

is expressed in this context via comparison to the complete setting. Second they allow for a more

accurate pricing of the investor’s position on the non-traded asset. Particularly the already established

quadratic expansion of the certainty equivalent provides valuable information in relation to the complete
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market. However, it fails to capture the effect of the nearly optimal process associated with the fourth-

order expansion of the value function, also referred as the “second-order” nearly optimal process in

contrast to the one that produces the quadratic expansion of the value function. Also, considering the

case of arbitrarily large time horizons, i.e. “long-term setting” comes with its own merits. Namely it

enables analyzing assets which do not have a certain pre-specified maturity. A prominent example of

such a situation arises, for example, in the context of a pension fund’s liabilities.

Extending the previously established results on the expansion of the value function w.r.t. a small ϵ up

to fourth order is no trivial task. A key challenge lies in establishing rigorous lower and upper bounds.

Unlike the second-order case, where discrepancies in bounding constants affect only the second-order

term, the fourth-order case sees such discrepancies propagate through all terms. This is due to the

non-regularity of the underlying processes. A crucial step to resolve this is to consider a range of

investment horizons instead of a fixed terminal time T , allowing for a localized analysis that yields the

desired fourth-order expansion. However, this approach becomes more delicate as T → ∞, since the

bounding constants also depend on T and thus influence the order of the approximation.

Related literature. The existing literature on optimal investment is vast in order to give a meaningful

overview. Instead, we focus on the specific area of utility-based hedging and pricing, which is central

to our work. Although this field has produced a wealth of results, explicit computations of utility-

based prices and hedging strategies are typically infeasible or require restrictive model assumptions.

This difficulty arises from the nonlinearity of the Hamilton-Jacobi-Bellman (HJB) partial differential

equation associated with the value function, which generally precludes closed-form solutions.

One notable exception is the exponential utility function, which often permits analytical tractability.

This is due to its property of separating the value function into components associated with wealth

and trading, simplifying the analysis considerably. Prominent works in this context include [Hen02],

[MZ04], [GH07], and [LL12]. These studies leverage a linearization technique—commonly referred to

as the Cole-Hopf transformation or distortion power—first introduced in claim valuation by [Zar01],

which reduces the nonlinear HJB PDE to a linear form solvable via standard methods. Further general-

izations by [FS08] and [FS10] showed that, even in models with general asset dynamics, the exponential

utility-based price admits a closed-form expression, although these formulas are often implicit and less

interpretable. Complementary to these results, Davis [Dav06] used duality techniques to derive an

explicit form for the optimal hedging strategy, with related developments in [Mon13]. Another line of

research, such as [AIR10], adopts a more stochastic perspective: by applying the martingale optimality

principle, the utility maximization problem is reformulated in terms of a forward-backward stochastic

differential equation (FBSDE) with quadratic nonlinearity, yielding a characterization of both price

and hedging strategy.

Even within the relatively tractable exponential utility framework, closed-form expressions are not

always obtainable. For example, in models where the claim depends on the traded asset, Sircar and

Zariphopoulou [SZ05] derive asymptotic expansions for the utility-indifference price in the regime of fast

mean-reverting volatility. Henderson and Liang [HL16] consider a multidimensional non-traded asset
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model subject to intertemporal default risk, and develop a semigroup approximation using splitting

techniques.

Given the scarcity of explicit results and their reliance on exponential utility, various asymptotic

approaches have been proposed for pricing and investment strategy in incomplete markets. Monoyios

[Mon04; Mon07], for example, works in a Black-Scholes framework with basis risk and approximates the

hedging strategy in powers of 1− ρ2, where ρ denotes the correlation between traded and non-traded

assets. In [Hen02] and [HH02] the authors consider power utility preferences and derive second-order

expansions of the investor’s value function with respect to a small position in the contingent claim,

thereby approximating both the hedging strategy and reservation price.

These early results were significantly extended in [KS06; KS07], where the authors operate in a

general semimartingale framework with broad utility functions defined on R>0. In [KS06], they use

second-order expansions of both the primal and dual value functions to derive first-order approxima-

tions for marginal (utility-based) indifference prices and study their qualitative features. Although

more general in scope, their analysis is confined to fixed time horizon and focuses solely on quadratic

expansions, in contrast to our own work. A related analysis by Kallsen [Kal02] studies first-order

marginal price approximations under local utility maximization.

In [KS07], using techniques developed in their earlier work, authors also provide first-order ap-

proximations of the utility-based hedging strategy and demonstrate its relation to quadratic hedging.

Similar asymptotic results are found in [Mon10], which considers valuation and hedging in the presence

of parameter uncertainty under exponential utility and partial information. There, the indifference

price is approximated to linear order in the risk aversion parameter via PDE methods.

In the same spirit, [KR11] analyzes utility-based pricing and hedging under exponential utility in

the limit of vanishing risk aversion or small claim quantities. First-order expansions are derived for

both price and hedging, extending earlier results in [MS05], [Bec06] and [KS06; KS07]. Building on

this line of research, [KMKV14] presents alternative representations of the results in [KS06; KS07]

for power utility functions that avoid the need for a change of numéraire. Their approach leverages

semimartingale characteristics and applies to exponential Lévy models.

Within the setting of exponential Lévy processes, [MT16] derives a novel non-asymptotic approxi-

mation for the exponential utility-based indifference price. The approach therein extends the earlier

small risk-aversion asymptotics and yields a closed-form approximation by treating the Lévy model as

a perturbation of the classical Black-Scholes framework.

Structure of the paper. Section 1 introduces the general setup of the market as well as the investor’s

optimal investment problem. Section 2 extends already known results relevant to the quadratic ex-

pansion of the value function for arbitrarily large horizons. Section 3 is dedicated to the (localized)

fourth order expansion of the value function and the respective nearly optimal wealth process. Finally,

in Section 4 we study the concept of log-based pricing in the context of its quadratic and fourth-order

expansions as well as their behavior as the time horizon goes to infinity.
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1. Setup

Fix a probability space (Ω,F,P) and consider a set of time horizons A, where either A= [0, U ], U >

0 (“short-term setting”) or A = R≥0 (“long-term setting”) s.t. each T ∈ A is connected with a

collection of assets on [0, T ] equipped with a filtration, which in this work will be generated by a

standard two-dimensional Brownian motion W = (W 1,W 2) (satisfying the usual hypotheses), i.e.

FW
T := (F(t))t∈[0,T ]. Note that a natural common reference point for all the above planning horizons is

the “unified” market on A equipped with FW := (F(t))t∈A. In this unified setting, consider an agent

that trades in two assets; a savings account (with a constant rate of return, r) and a risky asset. We

work in discounted terms, i.e. we have that the price of the bond is constant, and denote by S the

discounted price process of the risky asset with the following Itô return and stochastic exponential

price dynamics on A:

(1.1)
dR(t) = µ(t)dt+ σ(t)dW 1(t), R(0) = 0,

dS(t) = S(t)dR(t), S(0) > 0,

for predictable processes µ, σ s.t. σ > 0; denoting the local mean and volatility of the asset respectively.

In this context, a (self-financing) strategy invested in the market is defined as a pair (x, θ) for a constant

x ∈ R≥0 representing the initial capital, and a predictable (locally) S-integrable process θ, specifying

the amount (in units) invested in the risky asset. More precisely, we have that the wealth process

generated by any (x, θ) on A is given by:

(1.2) X̃ := x+

∫ ·

0

θ(t)dS(t).

The family of positive wealth processes is given as:

X̃+(x) := {X̃ : for a given x > 0 we have X̃ > 0}.

For T ∈ A, a probability measure QT ∼ P is an equivalent local martingale measure for that horizon

if S (equivalently X̃, where X̃ ∈ X̃+(1) in this context) is a local martingale on [0, T ] under QT . Denote

the class of those QT for each time horizon by QT and assume that:

(A1) QT ̸= ∅, ∀T ∈ A\ {0}.

This condition is intimately connected with the absence of arbitrage opportunities (refer to [DS94]).

Furthermore, define uT (x) := supX̃∈X̃+(x) E[ln(X̃(T ))] and to exclude the trivial case, assume:

(A2) ∀T ∈ A\ {0} we have uT (x) <∞, for some x > 0.

Then under (A1), (A2); following [KS99], ∀T ∈ Awe have uT (x) <∞ for all x > 0 and there exists a

unique solution to uT (x), referred as the log-optimal numeraire, for all such planning horizons; given by

xXπ⋆ where Xπ⋆ := E(Rπ⋆), Rπ⋆ :=
∫ ·
0
µ(t)/(σ(t))2dR(t) (in fact local R-integrability of π⋆ := µ/σ2

should be connected with (A1); see further in [KK21, Theorem 2.31]). Note that Xπ⋆ = 1/Sπ⋆

0 where
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Sπ⋆

0 := E(Rπ⋆

0 ), Rπ⋆

0 := −
∫ ·
0
µ(t)dW 1(t)/σ(t) can be used as a new numeraire for the market, under

which all the positive wealth processes become local martingales.

Moving forward, besides trading in the financial market we assume that the agent holds ϵ ∈ R units

of an exogenous non-traded endowment Λ (for example the cumulative surplus of a pension fund) that

is locally absolutely continuous on A 1, given (in discounted terms) by:

Λ =

∫ ·

0

e−rtλ(t)dt,

for a predictable process λ.

In fact, working under the assumption:

(A3) We have −ϵΛ(T ) > 0, ∀T ∈ A\ {0},

we can consider the following value function:

uT (x, ϵ) := sup
X̃∈X̃+(x)

E[ln(X̃(T )− ϵΛ(T ))],

and show that uT (x, ϵ) < ∞, ∀T ∈ A. More precisely, the fact that for the positive parts we have

ln+(X̃(T )−ϵΛ(T )) ≤ ln+(Xπ⋆(T ))+ln+(X̃(T )Sπ⋆

0 (T )−ϵSπ⋆

0 (T )Λ(T )), X̃ ∈ X̃+(x) along with uT (x) <

∞, ln(x) < x for all x > 0, X̃Sπ⋆

0 being a supermartingale and E[|Sπ⋆

0 (T )Λ(T )|] < ∞ should imply,

ln+(X̃(T )− ϵΛ(T )) ∈ L1(P). In turn we have for any positive wealth process X̃:

E[ln(X̃(T )− ϵΛ(T ))] ≤ E[Ũ(Sπ⋆

0 (T ))]︸ ︷︷ ︸
<∞

+E[Sπ⋆

0 (T )(X̃(T )− ϵΛ(T ))], for Ũ(y) := sup
x>0

[ln(x)− yx], y > 0.

≤ x+ E[Ũ(Sπ⋆

0 (T ))]− ϵE[Sπ⋆

0 (T )Λ(T ))] <∞,

yielding uT (x, ϵ) <∞.

Changing numeraire, expressing everything in terms of xXπ⋆ ; denoting by X+
π⋆ the class of processes

s.t. X̃/xXπ⋆ − 1, X̃ ∈ X̃+(x) (which are in fact integrals w.r.t. W 1) and setting L := ΛSπ⋆

0 we have:

uT (x, ϵ) = E[ln(Xπ⋆(T ))] + uTπ⋆(x, ϵ),

where uTπ⋆(x, ϵ) := supX∈X
+
π⋆

E[ln(1 +X(T )− ϵL(T )/x)] 2.

2. Second order asymptotics for the value function

For p ≥ 1 denote the class of martingales on A s.t. for each M we have E[(supt∈[0,T ] |M(t)|)p] <
∞, ∀T ∈ A by Hp and assume:

(A4) E[(L(T ))2] <∞, ∀T ∈ A\ {0}.

1Note that the term “locally” here refers to K ⊆ A that are compact.
2Following similar steps as the ones for uT (x, ϵ) we can see that ln+(1 + X(T ) − ϵL(T )/x) ∈ L1(P), X ∈ X+

π⋆ and

uT
π⋆ (x, ϵ) < ∞.
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Now, defining the class Mp := {M ∈ Hp :M =
∫ ·
0
θ(t)dW 1(t)} we produce a second order asymptotic

of uTπ⋆(1, ϵ) using the following unique solution:

(FO) DT
1 := argmin

X∈M2

E[(X(T )− L(T ))2], ∀T ∈ A,

where for any time horizon T ∈ A, by (FO) DT
1 is characterized uniquely on [0, T ] and considered as

being equal to its value at T for all times after, i.e. DT
1 equalsDT,T

1 := DT
1 (·∧T ) (this is usually omitted

for notational simplicity). Likewise for any other processes throughout this text that are characterized

in a similar manner. In particular DT
1 is given through the Kunita-Watanabe decomposition of the

martingale in H2 with terminal value L(T ) w.r.t. W 1, i.e. MT (t) = E[L(T )|F(t)] = DT
1 (t) + NT (t);

where NT ∈ H2 is strongly orthogonal to W 1 s.t. NT (0) =MT (0).

In the long-term setting, if we additionally assume that L(∞) := limT→∞ L(T ) is well defined

(a.s.) and E[(L(∞))2] < ∞ we can also denote M∞(t) = E[L(∞)|F(t)] and project it on the space

of Brownian integrals (w.r.t. W 1) that are square integrable on R≥0 (through Kunita-Watanabe

decomposition), i.e. on M2
∞ := {M ∈ H2

∞ :M =
∫ ·
0
θ(t)dW 1(t)} for H2

∞ being the class of martingales

on R≥0 s.t. E[(supt∈R≥0
|M(t)|)2] <∞. In turn we get M∞ = D∞

1 +N∞, similarly to the short-term

setting. To this end, consider:

(A5) E[(L(T ))2] <∞, ∀T > 0; L(∞) exists (a.s.) and E[(L(∞))2] <∞.

In turn, we get:

Proposition 2.1. Consider the short term setting. Assuming (A1), (A2), (A3) and (A4), then for each

such horizon we have:

(2.1) uTπ⋆(1, ϵ) + ϵE[L(T )] + (ϵ2/2)E[(DT
1 (T )− L(T ))2] = o(ϵ2).

Consider the long-term setting. Extending the first three assumptions on R≥0 and strengthening (A4)

to (A5), we additionally have limT→∞DT
1 = D∞

1 (locally uniformly) in probability and:

(2.2) lim
T→∞

∣∣uTπ⋆(1, ϵ) + ϵE[L(T )] + (ϵ2/2)E[(DT
1 (T )− L(T ))2]

∣∣ = O(ϵ2).

Note that a respective form of (2.1), but for a more general class of utility functions on the positive

real line, was derived in [KS06].

Proof. The idea is to use DT
1 , N

T in order to produce an upper and a lower bound for uπ⋆(ϵ) that

agree up to order ϵ2. Beginning with the former, consider the localizing (sub)sequence (τ̃m(k))k∈N>0

s.t. τ̃m(k) = inf{t : |NT (t)| + [NT ](t) ≥ m(k)} (where m(k) is sufficiently big s.t. it bounds

|NT (0)| from above). Now, define Y := exp(ϵE[L(T )])Sπ⋆

0 (T )E(ϵNT )(T ∧ τ̃m) and note that we have

NT,m, [NT,m], E(ϵNT )(T ∧ τ̃m) are uniformly bounded (omitting k in m(k) for notational simplicity)
3. In turn, for any X̃ ∈ X̃+(1) we have:

E[ln(X̃(T )− ϵΛ(T ))] ≤ E[Ũ(Y )] + E[Y (X̃(T )− ϵΛ(T ))]

3Note that the notation NT,m refers to the stopped process NT,τ̃m . Likewise for relevant cases throughout this text.
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= −1− E[ln(Y )] + E[Y (X̃(T )− ϵΛ(T ))]

≤ (eϵE[L(T )] − 1) + E[ln(Xπ⋆(T ))]− E[ln(eϵE[L(T )]E(ϵNT )(T ∧ τ̃m))]

− ϵE[Sπ⋆

0 (T )eϵE[L(T )]E(ϵNT )(T ∧ τ̃m)Λ(T )]

= (eϵE[L(T )] − 1− ϵE[L(T )]− 1

2
(ϵE[L(T )])2) + E[ln(Xπ⋆(T ))] +

ϵ2

2
E[(NT,m(T ))2]

− ϵE[eϵE[L(T )]E(ϵNT )(T ∧ τ̃m)MT (T )︸ ︷︷ ︸
apply
Itô

]

= (eϵE[L(T )] − 1− ϵE[L(T )]− 1

2
(ϵE[L(T )])2) + E[ln(Xπ⋆(T ))] +

ϵ2

2
E[(NT,m(T ))2]

− ϵE
[(
eϵE[L(T )]E[L(T )] + ϵ

∫ T∧τ̃m

0

eϵE[L(T )]E(ϵNT )(t)d[NT ](t)
)]

≤ o(ϵ2) + E[ln(Xπ⋆(T ))] +
ϵ2

2
E[(NT,m(T ))2]− ϵ(1 + ϵE[L(T )] + o(ϵ))E[L(T )]

− ϵ2E
[ ∫ T∧τ̃m

0

(1 + ϵNT (t)− ϵ2

2
[NT ](t))d[NT ](t)

]
, eh ≥ 1 + h, h ∈ R,

= E[ln(Xπ⋆(T ))]− ϵE[L(T )]− ϵ2

2
E[((NT,m(T ))2] + o(ϵ2)

= E[ln(Xπ⋆(T ))]− ϵE[L(T )]− ϵ2

2
E[(DT

1 (T )− L(T ))2]

+
ϵ2

2
E[[NT ](T )− [NT,m](T )] + o(ϵ2).

Recalling that uT (1, ϵ) = E[ln(Xπ⋆(T ))] + uTπ⋆(1, ϵ) we get:

(2.3) uTπ⋆(1, ϵ) ≤ −ϵE[L(T )]− ϵ2

2
E[(DT

1 (T )− L(T ))2] +
ϵ2

2
E[[NT ](T )− [NT,m](T )] + o(ϵ2).

Let’s now move forward to the lower bound. Consider the localizing sequence (τn)n∈N>0
s.t. τn =

inf{t : |DT
1 (t)| ≥ n} and suppose ϵ ∈ (−1/2n, 0) or ϵ ∈ (0, 1/2n) depending on the sign choice in (A3);

then Xπ⋆(1 + ϵDT,n
1 ) is a positive wealth process. Below we consider the case where ϵ ∈ (0, 1/2n), the

other one follows similarly. We have:

uT (1, ϵ) ≥ E[ln(Xπ⋆(T )(1 + ϵDT,n
1 (T ))− ϵΛ(T ))]

= E[ln(Xπ⋆(T ))] + E[ln(1 + ϵ(DT,n
1 (T )− L(T )))],

where 1 + ϵ(DT,n
1 (T ) − L(T )) ≥ 1 + ϵDT,n

1 (T ) ≥ 1 − ϵn > 0. Furthermore, denoting U(x) := ln(x),

Taylor’s theorem yields: U(x + h) = U(x) + U
′
(x)h + (1/2)U

′′
(x + ih)h2 for i ∈ [0, 1]. In turn since

1 + iϵ(DT,n
1 (T )− L(T )) = (1− i) + i(1 + ϵDT,n

1 (T )− ϵL(T )) ≥ (1− ϵn) and U
′′
is increasing, we have

U
′′
(1 + iϵ(DT,n

1 (T )− L(T ))) ≥ U
′′
(1− ϵn). Hence:

uT (1, ϵ) ≥ E[ln(Xπ⋆(T ))]− ϵE[L(T )]− ϵ2

2
E[(DT,n

1 (T )− L(T ))2]
1

(1− ϵn)2
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= E[ln(Xπ⋆(T ))]− ϵE[L(T )]− ϵ2

2
E[(DT,n

1 (T )− L(T ))2](1 + 2ϵn+ o(ϵ))

= E[ln(Xπ⋆(T ))]− ϵE[L(T )]− ϵ2

2

(
(MT (0))2 + E

[
[MT −DT,n

1 ](T ) + [MT,n](T )− [MT,n](T )
])

+ o(ϵ2)

≥ E[ln(Xπ⋆(T ))]− ϵE[L(T )]− ϵ2

2

(
(MT (0))2 + E

[
[MT −DT

1 ](T ) + [MT ](T )− [MT,n](T )
])

+ o(ϵ2)

= E[ln(Xπ⋆(T ))]− ϵE[L(T )]− ϵ2

2
E[(DT

1 (T )− L(T ))2]− ϵ2

2
E[[MT ](T )− [MT,n](T )] + o(ϵ2).

Recalling (2.3) we get:

(2.4)
−1

2
E[[MT ](T )− [MT,n](T )] ≤ lim

ϵ→0

uTπ⋆(1, ϵ) + ϵE[L(T )] + (ϵ2/2)E[(DT
1 (T )− L(T ))2]

ϵ2

≤ 1

2
E[[NT ](T )− [NT,m](T )].

Letting n → ∞, m → ∞, using the dominated convergence theorem concludes the first part of the

proof.

For the second part initially note that T 7→ L(T ) is (a.s.) continuous on R≥0 and the limit at

infinity exists (with L(∞) being its value). Hence T 7→ L(T ) is (a.s.) bounded by a square integrable

random variable. To see this note that due to limT→∞ L(T ) = L(∞) there exists a N > 0 s.t.

for T > N , L(T ) ∈ (L(∞) − 1, L(∞) + 1). Finally, as L(T ) is continuous on [0, N ] there exist

T
′
, T

′′ ∈ [0, N ] s.t. L(T
′
) ≤ L(T ) ≤ L(T

′′
), ∀T ∈ [0, N ]. Thus, |L(T )| ≤ CL on [0,∞), where

CL := max{|L(∞)−1|, |L(∞)+1|, |L(T ′
)|, |L(T ′′

)|}. Now, ∀T , DT
1 is the closed martingale derived from

DT
1 (T ), which in turn is the (orthogonal) projection of L(T ). Hence by the aforementioned and Doob’s

inequality we have: P(supt∈[0,T ] |DT
1 (t)−D∞

1 (t)| ≥ K) ≤ K−1∥DT
1 (T )−D∞

1 (∞)∥L1(P) ≤ K−1∥L(T )−
L(∞)∥L2(P), K > 0; which should converge to zero as T → ∞ by the dominated convergence theorem.

Similar results hold for the convergence of NT as T → ∞.

Beginning with the lower bound of the value function, we note that E[[MT ](T ) − [MT,n](T )] =

E[(MT (T ))2 − (MT,n(T ))2] ≤ E[(MT (T ))2] ≤ E[(CL)2] < ∞. Moreover, for ϵ > 0 (similar arguments

work for ϵ < 0) we have:

(2.5)

−ϵ
2

2
E[(DT,n

1 (T )− L(T ))2](2ϵn+ o(ϵ)) ≥ inf
T∈R≥0

(
− ϵ2

2
E[(DT,n

1 (T )− L(T ))2]
1− (1− ϵn)2

(1− ϵn)2

)
= −ϵ

2(1− (1− ϵn)2)

2(1− ϵn)2
sup

T∈R≥0

E[(DT,n
1 (T )− L(T ))2],

where the infimum/supremum above are finite by the uniform boundedness of DT,n
1 and the fact that

|L(T )| ≤ CL; for square integrable r.v. CL. In turn, we get:

uTπ⋆(1, ϵ) + ϵE[L(T )] + (ϵ2/2)E[(DT
1 (T )− L(T ))2] ≥ −ϵ

2

2
E[(CL)2]

− ϵ2(1− (1− ϵn)2)

2(1− ϵn)2
sup

T∈R≥0

E[(DT,n
1 (T )− L(T ))2].
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For the upper bound of the value function we use similar arguments as above, along with the fact

that NT,m, [NT,m] are uniformly bounded, E[[NT ](T )− [NT,m](T )] ≤ E[(NT (T ))2] ≤ CE[(L(T ))2] ≤
CE[(CL)2] < ∞, C > 0 (we also choose m in τ̃m s.t. it bounds |NT (0)| uniformly in T ). As well as

that the remainder of the nth order Taylor polynomial of eh is bounded by max(1, eh)|h|n+1/(n+ 1)!,

for h ∈ R. Hence |uTπ⋆(1, ϵ) + ϵE[L(T )] + (ϵ2/2)E[(DT
1 (T )−L(T ))2]| has an upper bound that does not

depend on the horizon and is O(ϵ2). □

Remark 2.1. Note that in our model, under the new numeraire Xπ⋆ , the assets become Sπ⋆

0 :=

E(Rπ⋆

0 ) = 1/Xπ⋆ , Rπ⋆

0 := −
∫ ·
0
µ(t)dW 1(t)/σ(t) and Sπ⋆

:= S(0)E(Rπ⋆

) = S/Xπ⋆ , Rπ⋆

:=
∫ ·
0
(σ(t) −

µ(t)/σ(t))dW 1(t). In turn, for each X̃ ∈ X̃+(1) we have:

X̃/Xπ⋆ = 1 +

∫ ·

0

θ0(t)︷ ︸︸ ︷(
X̃(t)

Xπ⋆ (t) − θ(t)Sπ⋆

(t)
)

Sπ⋆

0 (t)
dSπ⋆

0 (t) +

∫ ·

0

θ(t)dSπ⋆

(t)︸ ︷︷ ︸
X∈X

+
π⋆

.

In turn, using the above and the Kunita-Watanabe characterization of DT
1 we can directly get the

nearly optimal strategy associated with 1 + ϵDT
1 , in terms of its wealth process.

Example 2.1 (Short-term setting). Let’s consider simplified example where the exogenous endowment

is generated through a continuum of European call options driven by a correlated to the market factor

process. More precisely, we impose the following dynamics for the factor process, the tradeable asset

and the endowment:

dZ(t) = Z(t)(adt+ bdB(t)), a, b ∈ R; B := ρW 1 +
√
1− ρ2W 2, |ρ| ≤ 1,

dS(t) = S(t)(µdt+ σdW 1(t)), µ ∈ R, σ > 0,

Λ(t) =

∫ t

0

e−rsλ(Z(s))ds, λ(z) = (z −K)+; K > 0, r = 0.

We may consider this type of endowment as an already bought hedging position against the low values

of the factor process. This is suitable for example in the cases where the correlation of the tradeable

asset and the factor is negative and the investor has already buys small number of call options in order

to hedge the upward movement of the factor. Under another perspective, such form of Λ could be

linked to the bonus payments that is linked to a factor: when a factor (say the profitability of a firm)

is higher than a specified level, the manager, who is also an investor, gets a bonus.

Note that it is readily verified that assumptions (A2), (A3) (for ϵ ≤ 0) and (A4) of Proposition 2.1

hold. Now, note that E[L(T )|F(t)] =
∫ t

0
Λ(s)dSπ⋆

0 (s)+E[
∫ T

0
Sπ⋆

0 (s)λ(Z(s))ds|F(t)] =
∫ t

0
Λ(s)dSπ⋆

0 (s)+∫ t

0
Sπ⋆

0 (s)λ(Z(s))ds + Sπ⋆

0 (t)ψ(Z(t)); for ψ(z) := EQπ⋆

z [
∫ T

0
λ(Z(s))ds] and Qπ⋆

, where dQπ⋆ |F(T ) =

Sπ⋆

0 (T )dP|F(T ).

Hence, DT
1 is given as

∫ ·
0
Λ(t)dSπ⋆

0 (t) plus the Kunita-Watanabe projection of Sπ⋆

0 (t)ψ(Z(t)) w.r.t. B

on [0, T ]. In fact, as we know that the dynamics of Z under Qπ⋆

are dZ(t) = Z(t)(ãdt+bdBQπ⋆

(t)), ã :=
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a− µρb/σ we have that:

EQπ⋆

z [(Z(s)−K)+] = eãszΦ
(
m+(s, z)

)
−KΦ

(
m−(s, z)

)
=: χ(s, z),

Φ :=
1√
2π

∫ ·

−∞
e−x2/2dx,

m±(s, z) :=
1

b
√
s

[
ln(z/K) + (ã± b2/2)s

]
,

∂zχ(s, z) = eãsΦ
(
m+(s, z)

)
=: ∆(s, z).

Thus, DT
1 is given as

∫ ·
0
Λ(t)dSπ⋆

0 (t) plus the Kunita-Watanabe projection of Sπ⋆

0 (t)
∫ T

0
χ(s, Z(t))ds.

Now, using Itô’s lemma we should have that the part of Sπ⋆

0 (t)
∫ T

0
χ(s, Z(t))ds which contributes to

the K-W decomposition (i.e. it is not of finite variation) is of the form (
∫ T

0
χ(s, Z(t))ds)dSπ⋆

0 (t) +

(Sπ⋆

0 (t)
∫ T

0
∆(s, z)ds)dZ(t). In turn, 1 + ϵDT

1 should be given as:

1 + ϵDT
1 (t) = 1 + ϵ

∫ t

0

Λ(s)dSπ⋆

0 (s)− ϵ

∫ t

0

Sπ⋆

0 (u)

(∫ T

0

µχ(s, Z(u))− ρbσ∆(s, Z(u))

σ
ds

)
dW 1(u).

Hence, we get an analytic form of the main ingredient of the second order approximation (2.1).

Example 2.2 (Long-term setting). Consider the following model of an exogenous endowment that is

generated by a linear payoff:

dZ(t) = Z(t)(adt+ bdB(t)), a, b ∈ R; B := ρW 1 +
√
1− ρ2W 2, |ρ| ≤ 1,

dS(t) = S(t)(µdt+ σ(1 + κt)dW 1(t)), µ ∈ R, σ, κ ∈ R>0,

dSπ⋆

0 (t) = −Sπ⋆

0 (t)
µ

σ(1 + κt)
dW 1(t),

Λ(t) =

∫ t

0

e−rsλ(Z(s))ds, λ(z) = z; r > 0.

The pressence of the weight function w(t) := 1+κt gives a type of (hyperbolic) discounting in Sπ⋆

0 which

in turn ensures E[[Sπ⋆

0 ](∞)] <∞ and in general E[(Sπ⋆

0 (∞))n] <∞, n ∈ N>0. In fact we should have

E[(L(∞))2]2 ≤ E[(Sπ⋆

0 (∞))4]E[(
∫∞
0
e−rtZ(t)dt)4] < ∞, for sufficiently big r. This, however, comes at

the expense of Z not being time homogeneous (Markov process) under Qπ⋆

(for Qπ⋆

as in Example

2.1). Again, we readily check that the rest of the assumptions of Proposition 2.1 hold.

This example could model a pension fund which collectively invests in a tradeable asset (stock

market), whereas the process Λ stands for the accumulated contribution-liability surplus. Herein,

we also model the (most likely) positive correlation between the return of the stock market and the

contributions.

In turn, we should have:

E[L(T )|F(t)] =

∫ t

0

Λ(s)dSπ⋆

0 (s) + E
[ ∫ T

0

Sπ⋆

0 (s)Z(s)ds

∣∣∣∣F(t)

]
=

∫ t

0

Λ(s)dSπ⋆

0 (s) +

∫ t

0

Sπ⋆

0 (s)Z(s)ds+ E
[ ∫ T

t

e−rsSπ⋆

0 (s)Z(s)ds

∣∣∣∣F(t)

]
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=

∫ t

0

Λ(s)dSπ⋆

0 (s) +

∫ t

0

Sπ⋆

0 (s)Z(s)ds+ Sπ⋆

0 (t)

∫ T

t

e−rsEQπ⋆

[Z(s)|F(t)]ds

=

∫ t

0

Λ(s)dSπ⋆

0 (s) +

∫ t

0

Sπ⋆

0 (s)Z(s)ds+ e−rtCT (t)Sπ⋆

0 (t)Z(t),

for CT (t) :=

∫ T

t

e−(r−a)(s−t)
(w(t)
w(s)

)µρb
σκ

ds,

Thus 1 + ϵDT
1 should be given as:

1 + ϵDT
1 (t) = 1 + ϵ

∫ t

0

Λ(s)dSπ⋆

0 (s) + ϵ

∫ t

0

e−rsCT (s)Sπ⋆

0 (s)Z(s)
(
bρ− µ

σw(s)

)
dW 1(s).

In fact following a similar procedure as above for E[L(∞)|F(t)] =
∫ t

0
Λ(s)dSπ⋆

0 (s) +
∫ t

0
Sπ⋆

0 (s)Z(s)ds+

e−rtC(t)Sπ⋆

0 (t)Z(t), C(t) :=
∫∞
t
e−(r−a)(s−t)(w(t)/w(s))

µρb
σκ ds (which is finite for sufficiently big r)

we can check the convergence result in Proposition 2.1 for DT
1 . To this end note that we have

limT→∞ e−rtCT (t)Sπ⋆

0 (t)Z(t)(bρ− µ/σw(t)) = e−rtC(t)Sπ⋆

0 (t)Z(t)(bρ− µ/σw(t)) (pointwise) and fur-

thermore e−rtCT (t)Sπ⋆

0 (s)Z(t)(bρ−µ/σw(t)) can be bounded in T by aW 1-integrable process. There-

fore, by the (stochastic) dominated convergence we have limT→∞DT
1 = D∞

1 (locally uniformly in

probability). Hence, we manage to arrive to an analytic expression of the second order approximation

even when time horizon goes to infinity.

3. Fourth order asymptotics for the value function

The fourth order asymptotic can be also derived by considering an appropriate Kunita-Watanabe

decomposition. Particularly letQT denote the continuous version of the uniformly integrable martingale

E[(NT (T ))2|F(t)] (by (A4)). In turn, by the continuity of its paths, QT is locally square integrable and

hence it admits a Kunita-Watanabe decomposition w.r.t. W 1, similarly to the second order asymptotic,

i.e. QT = DT
2 +P

T ; where PT is strongly orthogonal toW 1 s.t. PT (0) = QT (0). In the case of the long-

term setting we also denote the martingale E[(N∞(∞))2|F(t)], which is well-defined by (A5), by Q∞.

In turn as it is locally square integrable, by its continuity, we decompose it (through Kunita-Watanabe

w.r.t. W 1) as Q∞ = D∞
2 + P∞; where P∞ is strongly orthogonal to W 1 s.t. P∞(0) = Q∞(0).

Remark 3.1. Note that while in Proposition 2.1 we could work with an arbitrary time horizon, the

situation here seems more complicated. The main thing to consider being the correct order to take

the limits on the upper and lower bounds of the value function. More precisely, if we follow similar

steps as in the second order asymptotic there is a discrepancy between the upper and lower bounds of

the value function when using localized versions of our processes. This discrepancy affects terms of all

orders (w.r.t. to ϵ), which is in contrast with the second order asymptotic where this procedure only

affected the second order term. This complication is compounded by the fact that in Proposition 2.1,

the positivity of 1 + ϵDT
1 is tied with ϵ. One way to somewhat disentangle this is to modify the time

horizon that the fourth order asymptotic holds, as we shall see in the following result.
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Before presenting the next result, we introduce the following relevant class. For I ⊆ R≥0 let K(I)

denote the class of stochastic processes (X(T ))T∈I where there exist constants β, γ, C > 0 s.t.:

E[|X(T )−X(S)|β ] ≤ C|T − S|1+γ , ∀T, S ∈ I.

Note that by Kolmogorov’s continuity theorem, each X ∈ K(I) admits a continuous version on I.

Theorem 3.1. Consider the short-term setting. Assuming (A1), (A2), (A3), as well as (A4) and

E[([MT,T −MS,S ](T ∨ S))β/2] ≤ C|T − S|1+γ , ∀T, S ∈ [0, U ] and some β, γ, C > 0; we have that

for each such time horizon there exists a sequence of stopping times Tm
T ∈ [0, T ] with limm→∞ Tm

T = T

and limm→∞D
Tm
T

1 = DT
1 , limm→∞D

Tm
T

2 = DT
2 (uniformly in probability) s.t.:

(3.1) u
Tm
T

π⋆ (1, ϵ)− g(ϵ(DTm
T

1 (Tm
T )−L(Tm

T )))+ ϵ4E[(DTm
T

2 (Tm
T ))2/2− (NTm

T (Tm
T ))2D

Tm
T

2 (Tm
T )] = o(ϵ4),

where g(Ψ) := E[Ψ−Ψ2/2 + Ψ3/3−Ψ4/4].

Consider the long-term setting. Extending the first three assumptions on R≥0, strengthening (A4)

to (A5) and assuming E[([MS1,S1 − MS2,S2 ](S1 ∨ S2))
β/2] ≤ C|S1 − S2|1+γ , ∀S1, S2 ∈ [0, T ] and

every T ∈ R≥0
4, we additionally have limT→∞DT

1 = D∞
1 , limT→∞DT

2 = D∞
2 (locally uniformly in

probability) and:

(3.2)

lim
T→∞

|uTm
T

π⋆ (1, ϵ)−g(ϵ(DTm
T

1 (Tm
T )−L(Tm

T )))+ϵ4E[(DTm
T

2 (Tm
T ))2/2−(NTm

T (Tm
T ))2D

Tm
T

2 (Tm
T )]| = Om(ϵ4) 5.

Proof. We begin by constructing the horizon which we will be working with. To this end we establish the

continuity of the adapted process (DT
1 (T ))T∈[0,U ]. Note that ∀T, S ∈ [0, U ] we have by the Burkholder-

Davis-Gundy (BDG) inequality:

E[|DT (T )−DS
1 (S)|β ] = E[|E[DT

1 (T )−DS
1 (S)|F(T ∨ S)]|β ]

≤ E[( sup
t∈[0,T∨S]

|E[DT
1 (T )−DS

1 (S)|F(t)]|)β ]

≤ CβE[([DT,T
1 −DS,S

1 ](T ∨ S))β/2]

≤ CβE[([MT,T −MS,S ](T ∨ S))β/2] 6,

which ensures the continuity of the process by Kolmogorv’s continuity theorem. As (DT
1 (T ))T∈[0,U ]

7

is continuous, its restriction on Ω×[0, T ] denoted by DS
1 (S)|[0,T ], T ∈ [0, U ] also is. By the continuity of

DS
1 (S)|[0,T ] on the compact interval [0, T ] we have M

′
,M ∈ [0, T ] s.t. DM

′

1 (M
′
)|[0,T ] ≤ DS

1 (S)|[0,T ] ≤
DM

1 (M)|[0,T ], ∀S ∈ [0, T ]. In turn, let ξ̆D1 denote the continuous version of the closed martingale

E[(|DM
′

1 (M
′
)|[0,T ]|+ |DM

1 (M)|)|[0,T ]|F(t)] on [0, U ] (ensured by the fact that we are working with the

Brownian filtration). Following a similar process for (NT (T ))T∈[0,U ] we get ξ̆N and ξ̆ := ξ̆D1 + ξ̆N ,

4Note that here C may also depend on T .
5Note that the notation Om(ϵ4) implies that the upper bound w.r.t. ϵ also depends on m.
6Recall that DS,S

1 , MS,S denote the (continuous) martingales DS
1 , M

S stopped at time S.
7This also implies the continuity of (NT (T ))T∈[0,U ] by the continuity of L.
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where the above conditional expectations are well defined by (A4). As ξ̆ is continuous and adapted,

τm(k) = inf{t : ξ̆(t) ≥ m(k)}, for sufficiently big m(k) ∈ N>0 s.t. in bounds ξ̆(0) from above, is a

localizing (sub)sequence that makes the stopped process ξ̆m uniformly bounded (omitting k in m(k)

for notational simplicity). Now consider the following sequence of bounded stopping times: Tm
T :=

τm ∧ T and note that for each m, L(Tm
T ) ∈ L2(P,F(Tm

T )). Hence it admits the following orthogonal

decomposition (which also gives rise to its Kunita-Watanabe projection): L(Tm
T ) = D

Tm
T

1 (Tm
T ) +

NTm
T (Tm

T ). In turn the above and the fact that for each m, Tm
T ∈ [0, T ] should imply the uniform

boundedness of the processes D
Tm
T ,m

1 , NTm
T ,m. To see this note |DTm

T
1 (Tm

T )| ≤ supS∈[0,T ] |DS
1 (S)| =

supS∈[0,T ] |DS
1 (S)|[0,T ]| ≤ |DM

′

1 (M
′
)|[0,T ]| + |DM

1 (M)|[0,T ]|. Hence taking conditional expectations on

F(t∧τm), using Jensen’s inequality and optional sampling we get the desired result for D
Tm
T ,m

1 (likewise

for NTm
T ,m). As NTm

T ,m is uniformly bounded, we have that (NTm
T (Tm

T ))2 ∈ L2(P,F(Tm
T )). In turn

it admits the following orthogonal decomposition (which once more gives rise to its Kunita-Watanabe

projection) (NTm
T (Tm

T ))2 = D
Tm
T

2 (Tm
T )+PTm

T (Tm
T ). Moreover, by Doob’s inequality we have forK > 0:

P( sup
t∈[0,U ]

|QTm
T ,Tm

T (t)−QT,T (t)| ≥ K) ≤ K−1∥(NTm
T (Tm

T ))2 − (NT (T ))2∥L1(P)

≤ K−1(∥NTm
T (Tm

T )−NT (T )∥2L2(P) + 2∥NT (T )(NTm
T (Tm

T )−NT (T ))∥L1(P))

≤ 4K−1(∥L(Tm
T )− L(T )∥2L2(P) + 2∥L(T )∥L2(P)∥L(Tm

T )− L(T )∥L2(P)),

which should go to zero as m→ ∞ by the dominated convergence theorem. Now for QTm
T −QTm

T (0) =:

Q̃Tm
T = D

Tm
T

2 + P̃Tm
T , P̃Tm

T := PTm
T − PTm

T (0) we have supt∈[0,U ] |Q̃Tm
T ,Tm

T (t) − Q̃T,T (t)| → 0 ⇔
[Q̃Tm

T ,Tm
T −Q̃T,T ](U) → 0 in probability, as m→ ∞ and noting that [Q̃Tm

T ,Tm
T −Q̃T,T ](U) = [D

Tm
T ,Tm

T
2 −

DT,T
2 ](U) + [P̃Tm

T ,Tm
T − P̃T,T ](U) we get limm→∞D

Tm
T

2 = DT
2 (uniformly in probability). Similarly we

have limm→∞D
Tm
T

1 = DT
1 , since P(supt∈[0,U ] |D

Tm
T ,Tm

T
1 (t)−DT,T

1 (t)| ≥ K) ≤ K−1∥L(Tm
T )−L(T )∥L2(P).

For each fixed m consider τ
′

i(j) = inf{t : |DTm
T

2 (t)|+ |PTm
T (t)| ≥ i(j)}, for sufficiently big i(j) ∈ N>0

s.t. it bounds |PTm
T (0)| (omitting once more j in i(j) for notational simplicity). Let’s now begin with

the upper bound. Unline the second order asymptotic we shall constrain ϵ for both bounds of the

value function. Focusing on the case where ϵ > 0, constraining ϵ ∈ (0, 1/2c) for c := m + i (similar

arguments work for ϵ < 0) we have that 1 + ϵNTm
T (t ∧ τm) + ϵ2PTm

T ,i(t ∧ τm) ≥ 1 − cϵ > 0. Define

Ỹ := Sπ⋆

0 (Tm
T )(1 + ϵNTm

T + ϵ2PTm
T ,i). In turn, following similar steps as in Proposition 2.1, we have

for any X̃ ∈ X̃+(1) 8:

E[ln(X̃(Tm
T )− ϵΛ(Tm

T ))] ≤ −ϵ3E[NTm
T (Tm

T )PTm
T ,i(Tm

T )] + E[ln(Xπ⋆(Tm
T ))]

− E[ln(1 + ϵNTm
T (Tm

T ) + ϵ2PTm
T ,i(Tm

T ))].

Following similar steps as in the lower bound for the second order asymptotic, we have for U(x) := ln(x):

U(x+h) = U(x)+U
′
(x)h+(1/2)U

′′
(x)h2+(1/6)U

′′′
(x)h3+(1/24)U

′′′′
(x+jh)h4 for some j ∈ [0, 1]. In

turn since 1+j(ϵNTm
T (Tm

T )+ϵ2PTm
T ,i(Tm

T )) = (1−j)+j(1+ϵNTm
T (Tm

T )+ϵ2PTm
T ,i(Tm

T )) ≥ (1−j)+j(1−

8Note that E[ln(X̃(Tm
T ) − ϵΛ(Tm

T ))] is well-defined by the continuity of X̃, Λ and the fact that ln+(X̃(T ) − ϵΛ(T )) ∈
L1(P), ∀T ∈ [0, U ]. Similarly for E[ln(Xπ⋆ (Tm

T ))], u
Tm
T

π⋆ (1, ϵ) and the continuous supermartingale Sπ⋆

0 .
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cϵ) ≥ 1−cϵ > 0 and U
′′′′

is increasing, we have−U ′′′′
(1+j(ϵNTm

T (Tm
T )+ϵ2PTm

T ,i(Tm
T ))) ≤ −U ′′′′

(1−cϵ).
Hence:

u
Tm
T

π⋆ (1, ϵ) ≤ −ϵE[L(Tm
T )]− ϵ2

2
E[(NTm

T (Tm
T ))2]− ϵ3

3
E[(NTm

T (Tm
T ))3] +

ϵ4

2
E[(PTm

T ,i(Tm
T ))2]

− ϵ4E[(NTm
T (Tm

T ))2PTm
T ,i(Tm

T )] +
1

4
E[(ϵNTm

T (Tm
T ) + ϵ2PTm

T ,i(Tm
T ))4]

1

(1− cϵ)4
+ o(ϵ4)

= −ϵE[L(Tm
T )]− ϵ2

2
E[(NTm

T (Tm
T ))2]− ϵ3

3
E[(NTm

T (Tm
T ))3] +

ϵ4

2
E[(PTm

T ,i(Tm
T ))2]

− ϵ4E[(NTm
T (Tm

T ))2PTm
T ,i(Tm

T )] +
1

4
E[(ϵNTm

T (Tm
T ) + ϵ2PTm

T ,i(Tm
T ))4](1 + 4cϵ+ o(ϵ)) + o(ϵ4).

Let’s now move forward to the lower bound. To this end recall τm, τ
′

i , introduced at the beginning of

this proof. Focusing once more on the case where ϵ > 0 and constraining as above ϵ ∈ (0, 1/2c) (similar

arguments work for ϵ < 0), we have that Xπ⋆(t)(1+ϵD
Tm
T

1 (t∧τm)+ϵ2D
Tm
T ,i

2 (t∧τm)) is a positive wealth

process since 1+ϵD
Tm
T

1 (t∧τm)+ϵ2D
Tm
T ,i

2 (t∧τm) ≥ 1−cϵ > 0. Following similar as for the upper bound

above, we have U(x+ h) = U(x) +U
′
(x)h+ (1/2)U

′′
(x)h2 + (1/6)U

′′′
(x)h3 + (1/24)U

′′′′
(x+ jh)h4 for

some j ∈ [0, 1]. In turn since 1+j(ϵD
Tm
T

1 (Tm
T )+ϵ2D

Tm
T ,i

2 (Tm
T )−ϵL(Tm

T )) = (1−j)+j(1+ϵDTm
T

1 (Tm
T )+

ϵ2D
Tm
T ,i

2 (Tm
T )−ϵL(Tm

T )) ≥ (1−j)+j(1+ϵDTm
T

1 (Tm
T )+ϵ2D

Tm
T ,i

2 (Tm
T )) ≥ (1−j)+j(1−cϵ) ≥ 1−cϵ > 0

and U
′′′′

is increasing, we have U
′′′′
(1+j(ϵD

Tm
T

1 (Tm
T )+ϵ2D

Tm
T ,i

2 (Tm
T )−ϵL(Tm

T ))) ≥ U
′′′′
(1−cϵ). Hence:

u
Tm
T

π⋆ (1, ϵ) ≥ E[ϵDTm
T

1 (Tm
T ) + ϵ2D

Tm
T ,i

2 (Tm
T )− ϵL(Tm

T )]− 1

2
E[(ϵDTm

T
1 (Tm

T ) + ϵ2D
Tm
T ,i

2 (Tm
T )− ϵL(Tm

T ))2]

+
1

3
E[(ϵDTm

T
1 (Tm

T ) + ϵ2D
Tm
T ,i

2 (Tm
T )− ϵL(Tm

T ))3]

− 1

4
E[(ϵDTm

T
1 (Tm

T ) + ϵ2D
Tm
T ,i

2 (Tm
T )− ϵL(Tm

T ))4]
1

(1− cϵ)4

= g(ϵ(D
Tm
T

1 (Tm
T )− L(Tm

T )))− ϵ4E[(DTm
T ,i

2 (Tm
T ))2/2− (D

Tm
T

1 (Tm
T )− L(Tm

T ))2D
Tm
T ,i

2 (Tm
T )] + o(ϵ4).

Combining the above with the previously established upper bound for the fourth order asymptotic, let-

ting first ϵ→ 0 and then i→ ∞ using Doob’s maximal inequality and applying dominated convergence,

we get the desired result.

The steps for the second part are very closely related to the ones of the short-term setting. To

this end note that since DS
1 (S)|[0,T ] ∈ K([0, T ]), T ∈ R≥0, by the BDG inequality, we once more

have M
′
,M ∈ [0, T ] (depending on T ) s.t. |DS

1 (S)|[0,T ]| ≤ |DM
′

1 (M
′
)|[0,T ]| ∨ |DM

1 (M)|[0,T ]|, ∀S ∈
[0, T ]. In turn, letting τm be any stopping time, we get the decomposition L(τm ∧ T ) = Dτm∧T

1 (τm ∧
T ) +Nτm∧T (τm ∧ T ) by (A4) and |Dτm∧T

1 (τm ∧ T )| ≤ supS∈[0,T ] |DS
1 (S)| = supS∈[0,T ] |DS

1 (S)|[0,T ]| ≤
|DM

′

1 (M
′
)|[0,T ]|+ |DM

1 (M)|[0,T ]|. Hence we have that |Dτm∧T,m
1 | ≤ ξ̆D1,m, where ξ̆D1 is the continuous

version of the martingale E[(|DM
′

1 (M
′
)|[0,T ]|+ |DM

1 (M)|[0,T ]|)|F(t)] on R≥0. Similar steps lead to ξ̆N

and ξ̆ := ξ̆D1 + ξ̆N . Using τm(k) = inf{t : ξ̆(t) ≥ m(k)}, k ∈ N≥0 we have that ξ̆m is bounded by

|ξ̆(0)|∨m. Since ξ̆(0) depends on T we use (A5) and the fact that the orthogonal projection is Lipschitz

to choose k (and hence m) sufficiently big s.t. it bounds ξ̆(0) uniformly in T . Thus we once more have

the uniform boundedness of D
Tm
T ,m

1 , NTm
T ,m. Similarly for τ

′

i(j) = inf{t : |DTm
T

2 (t)| + |PTm
T (t)| ≥ i(j)}
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and sufficiently big i(j) ∈ N>0 s.t. it bounds |PTm
T (0)| uniformly in T (using once more (A5) and the

fact that the orthogonal projection is Lipschitz). Recalling how we derived the fourth order bounds of

the value function at Tm
T above, working as for (2.5) and using the boundedness of D

Tm
T ,m

1 , NTm
T ,m,

D
Tm
T ,i

2 (t ∧ τm), PTm
T ,i(t ∧ τm) as well as the fact that the orthogonal projection of (NTm

T (Tm
T ))2 is

Lipschitz we get (3.2). For the case of limT→∞DT
1 = D∞

1 locally uniformly in probability, note that

for K > 0 we have:

P( sup
t∈[0,T ]

|QT (t)−Q∞(t)| ≥ K) ≤ 4K−1(∥L(T )− L(∞)∥2L2(P) + 2∥L(∞)∥L2(P)∥L(T )− L(∞)∥L2(P)).

Using (A5) and arguing as in the case of the short-term setting, we get the desired result. □

Before moving forward to some examples note that the discussion of Remark 2.1 can be naturally

extended for the case of 1 + ϵDT
1 + ϵ2DT

2 . Now, as D
Tm
T

1 , D
Tm
T

2 converge to DT
1 , D

T
2 , we focus on the

latter for the examples below.

Example 3.1 (Short-term setting). We continue with Example 2.2 but for r, κ = 0 (as we are working

in a finite horizon setting), which satisfies the assumptions of Theorem 3.1 on [0, U ]. More precisely,

following similar calculations as in Example 2.2 we have:

MT (t) =

∫ t

0

Λ(s)dSπ⋆

0 (s) +

∫ t

0

Sπ⋆

0 (s)Z(s)ds+ CT (t)Sπ⋆

0 (t)Z(t),

for CT (t) =

∫ T

t

eã(s−t)ds, where ã := a− µρb/σ,

and

1 + ϵDT
1 (t) = 1 + ϵ

∫ t

0

Λ(s)dSπ⋆

0 (s) + ϵ

∫ t

0

CT (s)Sπ⋆

0 (s)Z(s)(bρ− µ/σ)dW 1(s).

Now note that since (DT
1 (T )−L(T ))2 = (DT

1 (T )−MT (T ))2 = (NT (T ))2 and (NT (T ))2 = (NT (0))2+

2
∫ T

0
NT (t)dNT (t) + [NT ](T ), the W 1-projection (with zero initial value) in the Kunita-Watanabe

decomposition of the martingale with terminal value (NT (T ))2 will coincide with the projection of the

martingale with terminal value [NT ](T ). Hence:

E[[NT ](T )|F(t)] = E
[[ ∫ ·

0

CT (s)Sπ⋆

0 (s)Z(s)b
√

1− ρ2dW 2(s)
]
(T )

∣∣∣∣F(t)

]
=

∫ t

0

(CT (s)Sπ⋆

0 (s)Z(s)b
√

1− ρ2)2ds

+ E
[ ∫ T

t

e(µ
2/σ2)s(CT (s))2E(2Rπ⋆

0 )(s)(Z(s))2b2(1− ρ2)ds

∣∣∣∣F(t)

]
.

Letting Q2π⋆

denote the measure induced by E(2Rπ⋆

0 ), the above becomes:

E[[NT ](T )|F(t)] =

∫ t

0

(CT (s)Sπ⋆

0 (s)Z(s)b
√
1− ρ2)2ds

+ E(2Rπ⋆

0 )(t)

∫ T

t

e(µ
2/σ2)s(CT (s))2EQ2π⋆

[(Z(s))2|F(t)]b2(1− ρ2)ds
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=

∫ t

0

(CT (s)Sπ⋆

0 (s)Z(s)b
√
1− ρ2)2ds+ C̃T (t)E(2Rπ⋆

0 )(t)(Z(t))2,

for C̃T (t) := e(µ
2/σ2)t

∫ T

t

e((µ
2/σ)2+2ã+b2−2µρb/σ)(s−t)(CT (s))2b2(1− ρ2)ds.

Thus, we have that:

1 + ϵDT
1 + ϵ2DT

2 =1 + ϵ

(∫ t

0

Λ(s)dSπ⋆

0 (s) +

∫ t

0

CT (s)Sπ⋆

0 (s)Z(s)(bρ− µ/σ)dW 1(s)

)
+ ϵ2

∫ t

0

2C̃T (s)E(2Rπ⋆

0 )(s)(Z(s))2(bρ− µ/σ)dW 1(s).

Lastly note that for ρ = ±1, DT
2 vanishes as C̃T = 0.

Example (Example 2.2 continued, DT
2 ). Note that since (DT

1 (T ) − L(T ))2 = (DT
1 (T ) −MT (T ))2 =

(NT (T ))2 and (NT (T ))2 = (NT (0))2 + 2
∫ T

0
NT (t)dNT (t) + [NT ](T ), the W 1-projection (with zero

initial value) in the Kunita-Watanabe decomposition of the martingale with terminal value (NT (T ))2

will coincide with the projection of the martingale with terminal value [NT ](T ). Hence:

E[[NT ](T )|F(t)] = E
[[ ∫ ·

0

e−rsCT (s)Sπ⋆

0 (s)Z(s)b
√
1− ρ2dW 2(s)

]
(T )

∣∣∣∣F(t)

]
=

∫ t

0

(e−rsCT (s)Sπ⋆

0 (s)Z(s)b
√

1− ρ2)2ds

+ E
[ ∫ T

t

e−(2r−µ2/(σw(s))2)s(CT (s))2E(2Rπ⋆

0 )(s)(Z(s))2b2(1− ρ2)ds

∣∣∣∣F(t)

]
.

Letting Q2π⋆

denote the measure induced by E(2Rπ⋆

0 ), the above becomes:

E[[NT ](T )|F(t)] =

∫ t

0

(e−rsCT (s)Sπ⋆

0 (s)Z(s)b
√
1− ρ2)2ds

+ E(2Rπ⋆

0 )(t)

∫ T

t

e−(2r−µ2/(σw(s))2)s(CT (s))2EQ2π⋆

[(Z(s))2|F(t)]b2(1− ρ2)ds

=

∫ t

0

(e−rsCT (s)Sπ⋆

0 (s)Z(s)b
√
1− ρ2)2ds+ C̃T (t)E(2Rπ⋆

0 )(t)(Z(t))2,

C̃T (t) := e−(2a+b2)t

∫ T

t

e−(2r−µ2/(σw(s))2−2a−b2)s(CT (s))2(w(t)/w(s))4µρb/σκb2(1− ρ2)ds.

Thus ϵ2DT
2 should be given as:

ϵ2DT
2 (t) = ϵ2

∫ t

0

2C̃T (s)E(2Rπ⋆

0 )(s)(Z(s))2(bρ− µ/σw(s))dW 1(s).

In fact, working similarly as in Example 2.2, we have limT→∞DT
2 = D∞

2 (locally uniformly in prob-

ability) for sufficiently big r, where D∞
2 is the W 1-projection of the martingale with terminal value

[N∞](∞). Lastly note that for ρ = ±1, DT
2 vanishes as C̃T = 0.
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4. Utility-based pricing

The utility-based approach can also be used for the sake of pricing non-traded contingent claims. To

this end we introduce the notion of certainty equivalent value cT (ϵ) > −1 of the position (1, ϵ), which

is defined as the solution of the equation:

(4.1) uT (1 + cT (ϵ)) = uT (1, ϵ), ∀T ∈ A.

In words, for each time horizon the investor is indifferent between having the position (1, ϵ) and the

cash amount cT (ϵ). Note that as x 7→ u(x) is continuous and strictly increasing (and hence bijective),

(4.1) has a unique solution.

The valuation method (4.1) is well-known and widely-used in mathematical economics and finance

(see the related discussion in the introductory section). In particular, the indifference price yields a

subjective valuation of a non-replicable payoff in a incomplete market, which takes into account both

the investor’s risk preferences but also the part of the payoff that could be replicable through investing

in tradeable asset. In our setting, the application of the indifference price could provide a way to

measure the value of the endowment process even when there is no specific time horizon at which the

endowment vanishes. Under this perspective, the indifference price can be seen a subjective way to

value a promised pension plan that is designed by a pension fund manager. If the market were complete,

this value would be coincide with the unique non-arbitrage price and hence the pension plan could be

fully hedged. However, markets are incomplete (for example the contributions are only correlated to

the market) and hence there should be another way to value the pension plan, that takes into account

the presence of unhedgeable risk. The use of the indifference price is on that direction.

Based on the analysis of the previous sections, we get the following approximation of the indifference

price.

Proposition 4.1. Consider the short-term setting. Assuming (A1), (A2), (A3) and (A4), then for each

such horizon we have:

(4.2)

cT (ϵ)− ĉT2 (ϵ) = o(ϵ2),

ĉT2 (ϵ) := −ϵE[L(T )]− ϵ2

2

(
E[(DT

1 (T )− L(T ))2]− E[L(T )]2
)
.

Consider the long-term setting. Extending the first three assumptions on R≥0 and strengthening (A4)

to (A5) we additionally have:

(4.3) lim
T→∞

|cT (ϵ)− ĉT2 (ϵ)| = O(ϵ2).

Note that a respective form of (4.2), but for a more general class of utility functions on the positive

real line, was derived in [KS06].

Proof. We make the following ansatz of cT (ϵ)’s second order asymptotic:

ĉT2 (ϵ) := −ϵE[L(T )]− ϵ2

2

(
E[(DT

1 (T )− L(T ))2]− E[L(T )]2
)
.
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In turn, direct computations, as also discussed in [KS06], show that for sufficiently small ϵ (s.t. 1+ĉT2 (ϵ)

is bounded below by a positive constant) we have:

uT (1 + ĉT2 (ϵ))− uT (1, ϵ) = o(ϵ2).

Now applying the Mean Value Theorem (MVT) on x 7→ uT (x) and noting that ∂xu
T (x) > 0, we get

for ξT (ϵ) ≤ max(1 + cT (ϵ), 1 + ĉT2 (ϵ)):

|uT (1 + ĉT2 (ϵ))− uT (1 + cT (ϵ))|
|ĉT2 (ϵ)− cT (ϵ)|

= ∂xu
T (ξT (ϵ)) ≥ ∂xu

T (max(1 + cT (ϵ), 1 + ĉT2 (ϵ))),

where the inequality follows by the concavity of x 7→ uT (x). In fact we can get a lower bound on the

above that does not depend on ϵ. To this end note that:

1 + cT (ϵ) = (uT )−1(uT (1, ϵ))

= (uT )−1
(
E[ln(Xπ⋆(T ))] + uTπ⋆(1, ϵ)

)
.

Now using the fact that (uT )−1 is increasing we get:

1 + cT (ϵ) ≤ (uT )−1
(
E[ln(Xπ⋆(T ))] + sup

X∈X
+
π⋆

E[ln(1 +X(T )− L(T ))]
)

︸ ︷︷ ︸
K1(T )

,

for |ϵ| ≤ 1. We can similarly bound 1+ĉT2 (ϵ) from above by some constantK2(T ) (through appropriately

constraining ϵ). Hence, for K(T ) := max(K1(T ),K2(T )) > 0 we have:

|ĉT2 (ϵ)− cT (ϵ)| ≤ |uT (1 + ĉT2 (ϵ))− uT (1 + cT (ϵ))|
K(T )

=
|uT (1 + ĉT2 (ϵ))− uT (1, ϵ)|

K(T )
.

By the above along with (2.1) we get (4.2).

For the second part, firstly we refine the choice of K(T ) by choosing some K
′
s.t. it no longer

depends on either ϵ or the horizon. In particular, using ln(x) ≤ x− 1 for x > 0, 1+X, X ∈ X+
π⋆ being

a positive local martingale (hence a supermartingale) and E[|L(T )|] ≤ E[CL], ∀T ∈ R≥0 we have:

(4.4) 1 + cT (ϵ) ≤ (uT )−1
(
E[ln(Xπ⋆(T ))] + E[CL]

)
,

for |ϵ| ≤ 1. Now recall that ex can be defined as the unique real function that maps zero to one and has

derivative equals to its value. In turn noting that by the inverse function theorem we have ((uT )−1)
′
=

(uT )−1 implies that 1 + cT (ϵ) ≤ (uT )−1(0) exp(E[ln(Xπ⋆(T ))] + E[CL]) = exp(E[CL]) =: K
′

1. Similarly

for K
′

2 by using L(T ) ≤ CL, the fact that DT
1 (T ) is the orthogonal projection of L(T ). Hence, for

K
′
:= max(K

′

1,K
′

2) > 0 we have for sufficiently small ϵ (that does not depend on the time horizon)

s.t. 1 + ĉT2 (ϵ) is bounded below by a positive constant):

|ĉT2 (ϵ)− cT (ϵ)| ≤ |uT (1 + ĉT2 (ϵ))− uT (1, ϵ)|
K ′ .
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Now note that uT (1 + ĉT2 (ϵ)) can be written as E[ln((1 + ĉT2 (ϵ))Xπ⋆(T ))]. Taylor expanding ln((1 +

z)Xπ⋆(T )) for the deterministic z > −1, at z = 0 yields:

ln((1 + z)Xπ⋆(T )) = ln(Xπ⋆(T )) + z − z2

2
+
z3

3

1

(1 + y)3
, for y between 0 and z,

where the absolute value of the remainder is bounded above by max(|z|3, |z|3/(1 + z))/3. Hence we

get:

(4.5)

|uT (1, ϵ)− uT (1 + ĉT2 (ϵ))| ≤
∣∣∣uT (1, ϵ) + ϵE[L(T )] +

ϵ2

2
E[(DT

1 − L(T ))2]
∣∣∣+ ∣∣∣1

2
(ϵ2E[L(T )]2 − (ĉT2 (ϵ))

2)
∣∣∣

+max(|ĉT2 (ϵ)|3, |ĉT2 (ϵ)|3/(1 + ĉT2 (ϵ)))/3.

As shown for (2.2), the first term on the right-hand side of the above has an upper bound that does

not depend on T and is O(ϵ2). Likewise, the second term can be shown to have an upper bound

(that does not depend on T ) and is o(ϵ2) by the fact that DT
1 (T ) is the orthogonal projection of

L(T ) and |L(T )| ≤ CL. Similarly for the last term, also using the fact that 1 + ĉT2 (ϵ) is bounded

below by a positive constant (for sufficiently small ϵ that does not depend on T ). In other words,

max(|ĉT2 (ϵ)|3, |ĉT2 (ϵ)|3/(1 + ĉT2 (ϵ)))/3 has an upper bound (that does not depend on T ) and is o(ϵ2).

This concludes the proof. □

Example (Example 2.2 continued, ĉT2 ). For Qπ⋆

as in Example 2.1 we have:

ĉT2 (ϵ) = −ϵEQπ⋆
[ ∫ T

0

e−rtZ(t)dt

]
− ϵ2

2
E
[[ ∫ ·

0

e−rtCT (t)Sπ⋆

0 (t)Z(t)b
√

1− ρ2dW 2(t)
]
(T )

]
= −ϵ

∫ T

0

e−(r−a)t(1/w(t))µρb/σκdt

− ϵ2

2
E
[ ∫ T

0

e−(2r−µ2/(σw(t))2)t(CT (t))2E(2Rπ⋆

0 )(t)(Z(t))2b2(1− ρ2)dt

]
.

Letting Q2π⋆

denote the measure induced by E(2Rπ⋆

0 ), the above becomes:

ĉT2 (ϵ) = −ϵ
∫ T

0

e−(r−a)t(1/w(t))µρb/σκdt− ϵ2

2

∫ T

0

e−(2r−µ2/(σw(t))2)t(CT (t))2EQ2π⋆

[(Z(t))2]b2(1− ρ2)dt

=− ϵ

∫ T

0

e−(r−a)t(1/w(t))µρb/σκdt− ϵ2

2

∫ T

0

e−(2r−µ2/σ2w(t)−2a−b2)t(CT (t))2(1/w(t))4µρb/σκb2(1− ρ2)dt.

In fact for a sufficiently big r we should have:

lim
T→∞

ĉT2 (ϵ) = −ϵ
∫ ∞

0

e−(r−a)t(1/w(t))µρb/σκdt

− ϵ2

2

∫ ∞

0

e−(2r−µ2/σ2w(t)−2a−b2)t(C(t))2(1/w(t))4µρb/σκb2(1− ρ2)dt

= −ϵE[L(∞)]− ϵ2

2

(
E[(D∞

1 (∞)− L(∞))2]− E[L(∞)]2
)

︸ ︷︷ ︸
ĉ∞2 (ϵ)

.
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Lastly note that for ρ = ±1 we get: ĉT2 (ϵ) = −ϵE[L(T )] = −ϵEQπ⋆

[Λ(T )] = −ϵ
∫ T

0
e−(r−a)t(1/w(t))µρb/σκdt.

In turn, limT→∞ ĉT2 (ϵ) = −ϵE[L(∞)] = −ϵ
∫∞
0
e−(r−a)t(1/w(t))µρb/σκdt.

4.1. Utility-based pricing: fourth order asymptotics. We are now ready to move forward to the

(localized) fourth order expansion of the log-based certainty equivalent, using results of the previous

section.

Proposition 4.2. Consider the short-term setting. Under the assumptions for (3.1) in Theorem 3.1 we

have that for each time horizon T ∈ [0, U ] there exists a sequence of stopping times Tm
T ∈ [0, T ] with

limm→∞ Tm
T = T , s.t.:

(4.6) cT
m
T (ϵ)− ĉ

Tm
T

4 (ϵ) = o(ϵ4),

where:

ĉ
Tm
T

4 (ϵ) := −ϵE[L(Tm
T )]− ϵ2

2

(
E[(DTm

T
1 (Tm

T )− L(Tm
T ))2]− E[L(Tm

T )]2
)

+
ϵ3

3

(
E[(DTm

T
1 (Tm

T )− L(Tm
T ))3] + E[L(Tm

T )]3
)
− ϵ4

4

(
E[(DTm

T
1 (Tm

T )− L(Tm
T ))4]− E[L(Tm

T )]4
)

− ϵ4E[(DTm
T

2 (Tm
T ))2/2− (NTm

T (Tm
T ))2D

Tm
T

2 (Tm
T )] +

ϵ3

2
E[L(Tm

T )]E[(DTm
T

1 (Tm
T )− L(Tm

T ))2]

+
ϵ4

8
E[L(Tm

T )]4 +
ϵ4

8
E[(NTm

T (Tm
T ))2]2 +

ϵ4

3
E[L(Tm

T )]E[(NTm
T (Tm

T ))3] +
ϵ4

2
E[L(Tm

T )]2E[(NTm
T (Tm

T ))2].

Consider the long-term setting. Under the assumptions for (3.2) in Theorem 3.1, we additionally have:

(4.7) lim
T→∞

|cT
m
T (ϵ)− ĉ

Tm
T

4 (ϵ)| = Om(ϵ4).

Proof. Recalling how Tm
T was constructed in Theorem 3.1, denote the solution of (4.1) for Tm

T by

cT
m
T (ϵ) and note that it is well-defined since uTm

T (x) < ∞, x > 0, uTm
T (1, ϵ) < ∞ as previously noted.

We now make the following ansatz for cT
m
T (ϵ)’s fourth order asymptotic:

ĉ
Tm
T

4 (ϵ) := −ϵE[L(Tm
T )]− ϵ2

2

(
E[(DTm

T
1 (Tm

T )− L(Tm
T ))2]− E[L(Tm

T )]2
)

+
ϵ3

3

(
E[(DTm

T
1 (Tm

T )− L(Tm
T ))3] + E[L(Tm

T )]3
)
− ϵ4

4

(
E[(DTm

T
1 (Tm

T )− L(Tm
T ))4]− E[L(Tm

T )]4
)

− ϵ4E[(DTm
T

2 (Tm
T ))2/2− (NTm

T (Tm
T ))2D

Tm
T

2 (Tm
T )] +

ϵ3

2
E[L(Tm

T )]E[(DTm
T

1 (Tm
T )− L(Tm

T ))2]

+
ϵ4

8
E[L(Tm

T )]4 +
ϵ4

8
E[(NTm

T (Tm
T ))2]2 +

ϵ4

3
E[L(Tm

T )]E[(NTm
T (Tm

T ))3] +
ϵ4

2
E[L(Tm

T )]2E[(NTm
T (Tm

T ))2].

Following similar steps as for (4.2) in Proposition 4.1 we get for sufficiently small ϵ s.t. 1 + ĉ
Tm
T

4 (ϵ) is

bounded below by a positive constant (note that here ϵ may depend on m, T ):

(4.8) |ĉT
m
T

4 (ϵ)− cT
m
T (ϵ)| ≤ |uTm

T (1 + ĉ
Tm
T

4 (ϵ))− uTm
T (1 + cT

m
T (ϵ))|

K(Tm
T )

=
|uTm

T (1 + ĉ
Tm
T

4 (ϵ))− uTm
T (1, ϵ)|

K(Tm
T )

.
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Note that uTm
T (1 + ĉ

Tm
T

4 (ϵ)) can be written as E[ln((1 + ĉ
Tm
T

4 (ϵ))Xπ⋆(Tm
T ))] (the log-optimal numeraire

maximizes simultaneously all intertemporal conditional expected growth rates; see further in [Bec01]).

Taylor expanding ln((1 + z)Xπ⋆(Tm
T )) for the deterministic z > −1, at z = 0 yields (also recalling the

bounds of the Taylor remainder for logarithm in Proposition 4.1):

ln((1 + z)Xπ⋆(Tm
T )) = ln(Xπ⋆(Tm

T )) + z − z2

2
+
z3

3
− z4

4
+
z5

5

1

(1 + y)5
, for y between 0 and z,

where the absolute value of the remainder is bounded above by max(|z|5, |z|5/(1+z))/5. Applying this

to (4.8) and after some algebra we get:

K(Tm
T )|ĉT

m
T

4 (ϵ)− cT
m
T (ϵ)| ≤

∣∣g(ϵ(DTm
T

1 (Tm
T )− L(Tm

T )))− ϵ4E[(DTm
T

2 (Tm
T ))2/2− (NTm

T (Tm
T ))2D

Tm
T

2 (Tm
T )]

− u
Tm
T

π⋆ (1, ϵ)
∣∣+ o(ϵ4).

In turn, using Theorem 3.1 we get (4.6).

For the second part we work similarly to (4.3). The goal now is to derive bounding constants s.t.

they don’t depend on T (although they may depend on m). In fact using (A5) we get, as in (4.4),

1 + cT
m
T (ϵ) ≤ exp(E[CL]). For the case of 1 + ĉ

Tm
T

4 (ϵ) we also use the boundedness of NTm
T (Tm

T ) as

well as the fact that D
Tm
T

2 (Tm
T ) is the orthogonal projection of its square. Hence, for sufficiently small

ϵ (that does not depend on T , but may depend on m) s.t. 1 + ĉ
Tm
T

4 (ϵ) is bounded below by a positive

constant, using (3.2) and arguing as in (4.5) we get (4.7). □
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