
On Agent’s Agreement and Partial-Equilibrium Pricing in

Incomplete Markets

September 2, 2008

Michail Anthropelos

Department of Mathematics

University of Texas at Austin

1 University Station, C1200

Austin, TX 78712, USA

manthropelos@math.utexas.edu

Gordan Žitković
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i.e., for the trade to occur. We also study the asymptotic case where the size of the claim is
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1. Introduction

1.1. A description of the problem. In an ideal complete market, each contingent claim can be perfectly

replicated and, thus, a rational agent is indifferent between the (random) claim itself and its (deterministic)

replication price. Abundant empirical evidence shows that the real financial markets are far from complete;

only a small portion of contingent claims can be replicated in the market to a satisfactory degree. A

non-specific abstract notion of rationality is no longer sufficient to single out a unique “fair price” of any

contingent claim. This effect is demonstrable in over-the-counter transactions where (typically) two agents

negotiate a price of a single, indivisible, not-perfectly-replicable contingent claim. The final outcome of such

a negotiation eventually hinges upon two idiosyncratic factors - the agents’ attitude towards risk and their

negotiation skills. The focus of the present paper is the former. We ask the following question: Under what

conditions on the claim whose price is being negotiated, the liquid-market environment and the agents’ risk

attitudes will a mutually beneficial agreement be feasible?

Our modelling choices are informed by simplicity, but we steer clear of oversimplification. In particular,

we assume that the two agents are expected utility maximizers in the von Neumann-Morgenstern sense, with

a common investment horizon T . For simplicity and analytic tractability we assume that both agents’ utility

functions are exponential, possibly with different risk-aversion parameters. An important feature which is

not present in a major part of the past work on the subject is the presence of random endowments - the agents

are assumed to hold an illiquid portfolio and the risk assessment of any contingent claim will depend heavily

upon its (co-)relation with this illiquid portfolio. In addition to the illiquid random endowments, both agents

have access to a liquid incomplete financial market modelled by a general locally-bounded semimartingale.

Also, we assume that all pay-offs are already discounted in time-0 terms; this way we can freely compare

values corresponding to different points in time. Mathematical-finance literature abounds with information

on the utility-maximization problem for a variety of utility concepts (see, for instance, Karatzas et al. (1990),

Kramkov and Schachermayer (1999), Schachermayer (2001), Cvitanić et al. (2001), Owen (2002), Owen and

Žitković (2006)).

Under the conditions described above, the two agents meet at time 0 when one of the agents (the seller)

offers a contingent claim with time-T payoff B to the other one (the buyer) in exchange for a lump-sum

payment p at time t = 0. Our central question, posed above, can now be made more precise and split into

two separate components:

1. Is there a number p ∈ R such that the exchange of the contingent claim B for a lump sum p is

(strictly) beneficial for both agents?

2. If more than one such p exists, can we determine the exact outcome of the negotiation?

The net gain B−p will be beneficial for the buyer if he/she can find a trading strategy such that the resulting

wealth at time T gives rise to a higher expected utility than the one he/she would be able to obtain without
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B − p. A similar criterion applies to the seller. In case the answer to question 1. is positive, we say that the

agents are in agreement.

While we give a fairly complete answer to question 1., we only touch upon the issues involved in question

2. In fact, it is not possible to give a definitive answer to this question without a precise model of the

negotiation process (see, for instance, Bazerman and Neale (1992)). A partial answer is possible, however,

when the indivisibility assumption is dropped (see Section 5).

1.2. Our results and how they relate to existing research. Our results are naturally split into 4 parts

which correspond to Sections 3, 4, 5 and Appendix A in the present paper:

1. Abstract agreement: We start with the study of the class G◦ of all (appropriately regular) contingent

claims B for which the agents are in agreement. It is, perhaps, surprising that unless non-replicable random

endowments are present, no contingent claims will lead to agreement, even for agents with different risk-

aversion coefficients. When the random endowments are indeed present, we give a necessary and sufficient

condition for the set G◦ to be non-empty. This characterization is closely related to the notion of optimal

risk sharing which was first studied in the context of insurance/reinsurance negotiation (see, for instance,

Borch (1962), Bühlmann and Jewell (1979) and Dana and Scarsini (2007)) and in terms of the principal’s

problem (see, for instance, Holmstrom and Milgrom (1987)) and recently developed in more general settings

(see Föllmer and Schied (2004), Barrieu and El Karoui (2004), Barrieu and El Karoui (2005), Jouini et al.

(2006) and Filipović and Kupper (2008a)).

2. Agreement for a specific claim - residual risk and approximation: Next, we consider a question which

is in a sense dual to the one tackled in the previous part: is there a criterion for an agreement about a

given claim B? We propose two approaches: one through the notion of residual risk and the other based on

asymptotic approximation of conditional indifference prices for small quantities.

Residual risk (introduced in Musiela and Zariphopoulou (2004)) of a random liability is defined as the

difference between the liability’s payoff and the terminal value of the optimal risk-monitoring strategy at

maturity. We establish the following criterion, made precise in the body of the paper: a claim is mutually

agreeable if and only if it reduces the residual risk for both agents.

The other approach provides an explicit criterion in the asymptotic case when the size of the contingent

claim B is small compared to the size of the agents’ random endowments. It is possible to phrase the

agreement problem in terms of a relationship between the buyer’s and the seller’s conditional indifference

price for the claim, so it is not unusual that an asymptotic study of these quantities plays a major role. More

precisely, we provide a rather general Taylor-type approximation of the conditional exponential indifference

price for locally bounded semimartingales on continuous filtrations. These approximations are then used to

give simple asymptotic criteria for agreeability, as well as the asymptotic size of the interval of mutually-

agreeable prices. Since it is not possible to obtain closed-form representations of indifference prices in general

market models, such asymptotic results can be very useful even beyond the agreement problem.
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Asymptotic techniques are not new in utility maximization problems. Results on the second order ap-

proximation of the indifference price for the exponential and the power utility, in a market with Brownian

motion dynamics, are given in Henderson (2002) (see also Henderson and Hobson (2002)). These results are

generalized in Kramkov and Sirbu (2006) for semimartingale markets and general utility functions defined

on the positive real line. However, the arguments presented there do not cover the case of the exponential

utility (e.g., the situation when the optimal wealth is not necessarily bounded from below by zero). For

the exponential utility in a semimartingale market, the first derivative of the indifference price for a vector

of claims is given in Ilhan et al. (2005). By imposing the assumption of continuity on the filtration, we

generalize their result (as well as the asymptotic approximation in Sircar and Zariphopoulou (2005)) by

providing a second order approximation of the price for a vector of claims.

3. Partial equilibrium prices: In the third part of the paper we look into the following, related, question: if

the agents are allowed to choose not only the price of the claim, but also the quantity traded, can the market

clearing (partial equilibrium) conditions be used to compute these two quantities? We consider bundles of

several contingent claims and prove existence and uniqueness of equilibrium price-quantities, as well as a

formula for the partial equilibrium price. The existence results of various types of competitive equilibria are a

staple of quantitative economics literature, and have recently made their way into mathematical finance (see,

among others, Dana and Le Van (2000), Heath and Ku (2004), Žitković (2006), Burgert and Rüschendorf

(2008) and Filipović and Kupper (2008b)). Our incomplete partial-equilibrium setting is, however, new and

not covered by any of the existing results. As we already mentioned above, it is only in the present setting

that we can say something about question 2., i.e., about the realized price p of the offered contingent claim

B.

4. Conditional indifference prices: Our structural results rely heavily on the notion of conditional indifference

prices. Utility-indifference prices were first introduced in Hodges and Neuberger (1989), and then further

investigated and developed by a large number of authors (see, for instance, Karatzas and Kou (1996),

Davis (1997), Frittelli (2000), Rouge and El Karoui (2000), Zariphopoulou (2001), Hugonnier et al. (2005),

Mania and Schweizer (2005), Klöppel and Schweizer (2007)). The special case (pertinent to the present

paper) of exponential indifference prices was studied, e.g., in Frittelli (2000), Rouge and El Karoui (2000),

Zariphopoulou (2001), Delbaen et al. (2002) and Mania and Schweizer (2005).

In the presence of an illiquid random endowment, we talk about a conditional indifference price (also known

as relative indifference price in Musiela and Zariphopoulou (2005) and Stoikov (2006)). In the exponential

world, some of its properties can be obtained by a simple change of measure which, effectively, removes the

conditionality. Other properties, however, cannot be dealt with in that manner. The goal of the last part

of this work is to establish certain properties of conditional indifference prices in a general semimartingale

market setting. We show, for instance, a rather unexpected fact that conditional indifference prices (unlike

their unconditional versions) do not have to be monotone in the risk-aversion parameter.
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1.3. The structure of the paper. In Section 2, we describe the market model and introduce necessary

notation. The notion of agreement is introduced and our main abstract results are proven in Section 3. In

Section 4 we study the small-quantity asymptotics of conditional indifference prices, and use it to provide

an agreement criterion. An example in the Brownian setting is also presented. The topics of Section 5 are

existence and uniqueness of partial equilibrium price-quantities for vectors of contingent claims. In Appendix

A we state some properties of conditional indifference prices, and in Appendix B we give an outline of some

known results on residual risk.

2. Some modelling and notational preliminaries

2.1. The financial market. Our model of the financial market is based on a filtered probability space

(Ω,F ,F,P), F = (Ft)t∈[0,T ], T > 0, which satisfies the usual conditions of right-continuity and completeness.

There are d + 1 traded assets (d ∈ N), whose discounted price processes are modelled by an Rd+1-valued

locally bounded semimartingale (S(0)
t ; St)t∈[0,T ] = (S(0)

t ;S(1)
t , . . . , S

(d)
t )t∈[0,T ]. The first asset S(0)

t plays the

role of a numéraire security or a discount factor. Operationally, but with some loss of generality, we simply

set S(0)
t ≡ 1, for all t ∈ [0, T ], a.s.

2.2. Agent behaviour. Placing ourselves in the von Neumann-Morgenstern framework, we assume that

each market participant evaluates the risk of an uncertain position X at time T according to the expected

utility EP[U(X + E)], where U is a utility function and E is the random endowment (accumulated illiquid

wealth) and P is a subjective probability measure. For technical reasons, we restrict our attention to

E ∈ L∞(F) and the class of exponential utilities

U(x) = − exp(−γx), x ∈ R

where the constant γ ∈ (0,∞) is the (absolute) risk aversion coefficient.

2.3. Admissible strategies and the absence of arbitrage. A financial agent invests in the market by

choosing a portfolio strategy ϑ in an admissibility class Θ, to be specified below. The resulting gains process

(Gϑt )t∈[0,T ] is simply the stochastic integral Gϑt = (ϑ ·S)t =
∫ t

0
ϑu dSu. Due to the exponential nature of the

utility functions considered here, we follow the setup introduced in Mania and Schweizer (2005) or Delbaen

et al. (2002). Before we give a precise description of the aforementioned set Θ, we need to introduce several

concepts related to the no-arbitrage requirement. We start with the set Ma of absolutely continuous local

martingale measures, where

Ma = {Q� P : S is a local martingale under Q}
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The set Me of all elements Q of Ma which additionally satisfy Q ∼ P is called the set of equivalent local

martingale measures. For a probability measure Q on (Ω,F), we define

H(Q|P) =

E
P [dQ

dP ln
(
dQ
dP
)]

Q� P,

+∞, otherwise

The (extended) positive number H(Q|P) is called the relative entropy of the probability measure Q with

respect to probability measure P. For details on the notion of relative entropy we refer the interested reader

to Grandits and Rheinländer (2002) or Frittelli (2000). We set

Me,f = {Q ∈Me : H(Q|P) <∞}

and enforce the following assumption

Assumption 2.1. Me,f 6= ∅.

Assumption 2.1 trivially implies that Me 6= ∅ which, in turn, guarantees that no arbitrage opportunities

exist in the market (a stronger statement of “no free lunch with vanishing risk” will hold, as well). The

additional requirement in Assumption 2.1 is common in the literature and it ensures that the choice of the

exponential function for the utility leads to a well-defined behavior for utility-maximizing agents (see, among

others, Delbaen et al. (2002), Frittelli (2000), Becherer (2001) and Mania and Schweizer (2005)).

Having introduced the required families of probability measures, we turn back to definition of the class

Θ of admissible strategies:

(2.1) Θ = {ϑ ∈ L (S) : (ϑ · S) is a Q-martingale, ∀Q ∈Me,f}

where L(S) is the set of all predictable (d+1)-dimensional S-integrable processes on [0, T ]. More information

about the set Θ of admissible strategies is given in Mania and Schweizer (2005) (see also remarks on the set

Θ2 in Delbaen et al. (2002)).

We remind the reader that L0(F) denotes the set of all (P-a.s. equivalent classes of) F-measurable random

variables. A random variable B ∈ L0(F) is said to be replicable if there exists a constant c and an admissible

strategy ϑ ∈ Θ such that B = c+ (ϑ · S)T a.s.; the set of replicable random variables will be denoted by R.

More generally, we introduce the following equivalence relation between random variables in L0(F):

Definition 2.2. We call two random variables B,C ∈ L0(F) risk equivalent or equal up to replicability and

write B ∼ C, if the difference B − C is replicable.

It is clear that the relation ∼ is an equivalence relation on L0(F) (since Θ is a vector space). We note that

the zero equivalence class coincides with the set R of the replicable random variables. For future reference,

we let R∞ = R∩ L∞(F) denote the set of all (essentially) bounded replicable random variables.
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2.4. Some special probability measures. The expectation operator under a probability measure Q is

denoted by EQ[·], where the superscript Q is omitted in the case of the (subjective) measure P. Also, for a

random vector B = (B1, B2, ..., Bn), EQ[B] stands for the vector (EQ[B1],EQ[B2], ...,EQ[Bn]) ∈ Rn.

For a random variable B ∈ L0(F) with E[exp(B)] < ∞, the probability measure whose Radon-Nikodym

derivative with respect to P is given by exp(B)
E[exp(B)] , is denoted by PB . Furthermore, Q(0) denotes the probability

measure in Ma with the minimal relative entropy with respect to P i.e., the probability measure for which

H(Q(0)|P) ≤ H(Q|P) for all Q ∈ Ma. It is a consequence of Assumption 2.1 that the probability measure

Q(0) exists, is unique and belongs to Me,f (see Frittelli (2000), page 43, Theorem 2.2). Similarly, for every

B such that E[exp(B)] <∞, there exists a unique probability measure Q(B) ∈Ma such that H(Q(B)|PB) ≤
H(Q|PB) for all Q ∈Ma (see Delbaen et al. (2002), page 103).

3. A notion of agreement between financial agents

3.1. Utility maximization and indirect utility. Given their risk profiles, financial agents trade in the

financial market with the goal of maximizing expected utility. More precisely, an agent with initial wealth

x ∈ R, risk-aversion coefficient γ and random endowment E ∈ L∞ will choose a portfolio process ϑ ∈ Θ

so as to maximize the expected utility E[− exp(−γ((x + ϑ · S)T + E))]. The value function uγ(x|E) of the

corresponding optimization problem is given by

uγ(x|E) = sup
ϑ∈Θ

E
[
− exp

(
−γ
(
x+ (ϑ · S)T + E

)) ]
, x ∈ R.(3.1)

Overloading the notation slightly, for any random variable B ∈ L∞(F) (interpreted as a contingent payoff

with maturity T ) we define the indirect utility of B by uγ(B|E) = uγ(0|E +B), i.e.

(3.2) uγ(B|E) = sup
ϑ∈Θ

E
[
− exp(−γ ((ϑ · S)T + E +B))

]
.

Remark 3.1. Thanks to the choice of the exponential utility, the case where the agents have different subjec-

tive probability measures, say P1 6= P2, is also covered. Indeed, if we assume that P1 ≈ P2 and ln(dP1
dP2

) ∈ L∞,

we can reduce the analysis to the case of two agents with the same subjective measure, say P2, by adding

γ1 ln(dP1
dP2

) to first agent’s random endowment.

3.2. A preference relation and a notion of acceptability. The indirect utility uγ(·|E) induces a pref-

erence relation �γ,E , on L∞(F); for B1, B2 ∈ L∞(F), we set

B1 �γ,E B2 if uγ(B1|E) ≤ uγ(B2|E).

In words, the payoff B2 is preferable to the payoff B1 for the agent with random endowment E and risk

aversion coefficient γ, if the total payoff E +B2 yields more indirect utility than the payoff E +B1.
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The set of all payoffs B ∈ L∞(F) such that 0 �γ,E B is called the (γ, E)-acceptance set, and we denote it

by Aγ(E). Equivalently, we have

Aγ(E) =
{
B ∈ L∞(F) : sup

ϑ∈Θ
E
[
− exp(−γ ((ϑ · S)T + E))

]
≤

≤ sup
ϑ∈Θ

E
[
− exp(−γ ((ϑ · S)T + E +B))

]}
.

(3.3)

Closely related to the relation �γ,E is its strict version ≺γ,E defined by

B1 ≺γ,E B2 if uγ(B1|E) < uγ(B2|E), B1, B2 ∈ L∞(F).

The strict (γ, E)-acceptance set A◦γ(E), is defined by A◦γ(E) = {B ∈ L∞ : uγ(0|E) < uγ(B|E)}, and the

representation analogous to (3.3) (with ≤ replaced by <) holds.

It is a consequence of the choice of the exponential utility function that the addition of any constant

initial wealth x ∈ R to the random endowment E does not influence the acceptance sets Aγ(E) and A◦γ(E).

More generally, we have the following simple proposition, the proof of which is standard. We remind the

reader that a set A is called monotone if B ≥ C, a.s. and C ∈ A imply B ∈ A.

Proposition 3.2. For every E ∈ L∞ and γ ∈ (0,∞), the sets Aγ(E) and A◦γ(E) are convex, monotone and

(3.4) E1 ∼ E2 implies Aγ(E1) = Aγ(E2) and A◦γ(E1) = A◦γ(E2)

3.3. Conditional indifference prices. The acceptance set Aγ(E) can be used to introduce the notion of

a conditional indifference price. The conditional writer’s indifference price ν(w)(B; γ|E) of the contingent

claim B ∈ L∞(F) is defined by

ν(w)(B; γ|E) = inf {p ∈ R : p−B ∈ Aγ(E)} .(3.5)

i.e., ν(w)(B; γ|E) is the minimum amount that the agent with preference relation �γ,E will be willing to sell

the claim with payoff B for. Similarly, the conditional buyer’s indifference price ν(b)(B; γ|E) is defined by

ν(b)(B; γ|E) = sup {p ∈ R : B − p ∈ Aγ(E)} .(3.6)

i.e., ν(b)(B; γ|E) is the maximum amount that the agent with preference relation �γ,E will offer for a con-

tingent claim with payoff B.

In the special case where E ∼ 0, the corresponding prices are called unconditional indifference prices

(or, simply, indifference prices) and are denoted by ν(w) (B; γ) and ν(b) (B; γ). A compendium of relevant

properties of both conditional and unconditional indifference prices is given in Appendix A.

The notion of the indifference price has been studied by many authors (see, among others, Hodges and

Neuberger (1989), Rouge and El Karoui (2000), Henderson (2002) and Musiela and Zariphopoulou (2004)).

The definition of the conditional indifference price under exponential utility was given in Becherer (2001)

for general semimartingale model, in Musiela and Zariphopoulou (2005) for a binomial case model and in
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Stoikov (2006) for a diffusion model (where the price is called relative indifference price). A discussion of

the conditional indifference price under general utility functions is given in Owen and Žitković (2006).

3.4. Agreement. The present paper deals with the interaction between two financial agents, with risk

aversion coefficients γ1 and γ2 and random endowments E1, E2 ∈ L∞(F).

Definition 3.3. A contingent claim B ∈ L∞(F) is said to be

(1) mutually agreeable if there exists a number p ∈ R such that p−B ∈ Aγ1(E1) and B − p ∈ Aγ2(E2).

(2) strictly mutually agreeable if there exists a number p ∈ R such that p − B ∈ A◦γ1(E1) and B − p ∈
A◦γ2(E2).

If a claim B is (strictly) mutually agreeable, the set of all p ∈ R such that the conditions in (1) (or (2) in

the strict case) above hold is called the set of (strictly) mutually agreeable prices for B.

A discussion related to our notion of mutually agreeability is given in Jouini et al. (2006), subsection 3.6,

for cash invariant monetary utility functions, but without the presence of a financial market.

Using the conditional writer’s and buyer’s indifference prices, ν(w)(·; γ1|E1) and ν(b)(·; γ2|E2) defined above,

we can give a simple characterization of the set of mutually-agreeable prices.

Proposition 3.4. A claim B ∈ L∞(F) is mutually agreeable if and only if

(3.7) ν(w)(B; γ1|E1) ≤ ν(b)(B; γ2|E2).

In that case, the set of mutually-agreeable prices for B is given by

[ν(w)(B; γ1|E1), ν(b)(B; γ2|E2)].

Remark 3.5.

(1) A version of Proposition 3.4 for strict mutually-agreeable prices with strict inequality in (3.7) and the

interval [ν(w)(B; γ1|E1), ν(b)(B; γ2|E2)] replaced by its interior (ν(w)(B; γ1|E1), ν(b)(B; γ2|E2)) holds.

(2) For a contingent claim B ∈ L∞(F) \ R∞, each (strictly) mutually agreeable price p of B satisfies

p ∈ (infQ∈Ma
EQ[B], supQ∈Ma

EQ[B]) (see, e.g., Owen and Žitković (2006), Proposition 7.2) i.e.,

every mutually agreeable price is an arbitrage-free price. Trivially, every claim B ∈ R∞ is mutually

agreeable and the mutually agreeable price is unique and equal to the unique arbitrage-free price.

3.5. The set of all mutually agreeable claims. It will be important in the sequel to introduce separate

notation for the set of all (strictly) mutually agreeable claims:

G = {B ∈ L∞ : B is mutually agreeable} , and,

G◦ = {B ∈ L∞ : B is strictly mutually agreeable} .

We remind the reader that R∞ is the set of all replicable claims in L∞(F).
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Proposition 3.6.

(1) G is convex and σ(L∞,L1)-closed.

(2) G ∩ (−G) = R∞, G◦ ∩ (−G◦) = ∅,
(3) G = L∞ if and only if R∞ = L∞.

Proof.

(1) The convexity of G follows from the convexity of ν(w)(·; γ1|E1) and concavity of ν(b)(·; γ2|E2) (see

Proposition A.2). As for the closedness, it will be enough to note that ν(w)(·; γ1|E1) : L∞ → R

is lower semi-continuous and ν(b)(·; γ2|E2) : L∞ → R is upper semi-continuous with respect to the

weak-* topology σ(L∞,L1) (see Corollary A.4).

(2) Trivially, R∞ ⊆ G ∩ (−G). For a claim B ∈ G ∩ (−G), there exists p, p̂ ∈ R such that p − B ∈
Aγ1(E1) and B − p ∈ Aγ2(E2) , as well as p̂ + B ∈ Aγ1(E1) and −B − p̂ ∈ Aγ2(E2). It follows, by

convexity of Aγ1(E1) that 1
2 (p+ p̂) = 1

2 (p−B + p̂+B) ∈ Aγ1(E1), i.e., uγ1(0|E1) ≤ uγ1( 1
2 (p+ p̂)|E1).

The strict monotonicity of the value-function uγ1(.|E1) for deterministic arguments implies that
1
2 (p + p̂) ≥ 0. Applying the same line of reasoning to Aγ2(E2) and the value function uγ2(.|E2),

we get that − 1
2 (p + p̂) ≥ 0, and, consequently, p = −p̂. Using the definitions (3.5) and (3.6) of

the conditional indifference prices we easily get that ν(b)(B; γ1|E1) ≥ p ≥ ν(w)(B; γ1|E1), which,

according to Corollary 3.9, implies that B ∈ R∞.

To prove the second claim, it suffices to note that G◦ ∩ R∞ = ∅. Indeed, ν(w)(B; γ1|E1) =

ν(b)(B; γ2|E2) = EQ[B] for B ∈ R∞ and all Q ∈Ma.

(3) If G = L∞ then L∞ ⊆ G ∩ (−G) so L∞ = R∞, by (2) above. Conversely, if L∞ = R∞ then

L∞ = G ∩ (−G) ⊆ G.

�

Remark 3.7. The weak-* topology σ(L∞,L1) in Proposition 3.6 can be replaced by an even weaker one,

namely the coarsest topology τ on L∞ which makes the expectation mappings EQ[·] : L∞ → R continuous

for each Q ∈Me,f .

3.6. No agreement without random endowments. The following, at first glance surprising, result states

that mere difference in risk-aversion is not enough for two exponential agents to agree on a price for any

contingent claim. Qualitatively different random endowments are needed.

Proposition 3.8 (Non-agreement with replicable random endowments). Suppose that E1 ∼ E2 ∼ 0. Then

G = R∞ and G◦ = ∅.

Proof. The limiting relationships in (A.10) and the monotonicity properties of the indifference prices (see

Proposition A.11) imply that

(3.8) ν(w)(B; γ1|E1) = ν(w) (B; γ1) ≥ EQ(0)
[B] ≥ ν(b) (B; γ2) = ν(b)(B; γ2|E2),∀B ∈ L∞.
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Therefore, the strict inequality ν(w)(B; γ1|E1) < ν(b)(B; γ2|E2) - needed for the strong agreement - cannot

hold. Consequently, G◦ = ∅.
If B ∈ G, (3.8) implies that ν(w)(B; γ1|E1) = ν(w) (B; γ1) = EQ(0)

[B] = limγ→0 ν
(w) (B; γ). Therefore, the

function γ 7→ ν(w) (B; γ) can not be strictly increasing on (0,∞), so, by Proposition A.11, we must have

B ∈ R∞. Hence, G ⊆ R∞, which implies that G = R∞.

�

Our following result, Corollary 3.9, follows directly from Proposition 3.8 and the fact that the conditional

indifference price becomes unconditional if the measure P is changed to P−γE (see Proposition A.1 and the

discussion at the beginning of subsection A.2).

Corollary 3.9. Suppose that E1 ∼ E2. Then for every γ > 0 and B ∈ L∞, we haveν
(w)(B; γ|E1) > ν(b)(B; γ|E2) for B /∈ R∞,

ν(w)(B; γ|E1) = ν(b)(B; γ|E2) otherwise.

Remark 3.10. A non-agreement problem in the case where the agents’ utility functions are defined on the

positive real line is addressed in Collin Dufresne and Hugonnier (2007). More precisely, the authors deal with

the special case when the market incompleteness comes from the presence of “extraneous risk” and conclude

that there is no agreement between the agents on non-replicable, not-necessarily-bounded claims. However,

their arguments depend heavily on the special structure of the market and do not generalize directly to our

setting.

3.7. Agreement with random endowments. Proposition 3.8 states that the absence of random endow-

ments is a sufficient condition for the lack of (strict) agreement. Is it also necessary? Given the result

of Proposition 3.4, the question of the existence of non-replicable mutually agreeable claims leads to the

following optimization problem with value function Σ : (0,∞)2 × (L∞)2 → [0,+∞], where

(3.9) Σ(γ1, γ2, E1, E2) = sup
B∈L∞

(
ν(b)(B; γ2|E2)− ν(w)(B; γ1|E1)

)
.

It follows directly from the Definition 3.3 of the set G that the following result holds:

Proposition 3.11. For E1, E2 ∈ L∞, γ1, γ2 ∈ (0,∞) and Σ = Σ(γ1, γ2, E1, E2), the following two statements

are equivalent

(a) G◦ 6= ∅, and

(b) Σ > 0.

Remark 3.12. The optimization problem above permits an interpretation in terms of the so-called optimal

risk-sharing problem. In the case where the agents do not have access to a financial market, this problem

has been addressed by many authors (see, e.g., Borch (1962) for its relation to the insurance/reinsurance

problem, Holmstrom and Milgrom (1987) and Barrieu and El Karoui (2004) for the exponential utility case,
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Jouini et al. (2006) for monetary utility functionals and Barrieu and Scandolo (2008) for concave preference

functionals). When a financial market is present, the problem of optimal risk sharing when both agents have

exponential utility has been studied in Barrieu and El Karoui (2005), where the authors focus on the form

of the optimal structure.

Before we proceed, we need to define several terms.

Definition 3.13.

(1) The sum E = E1 + E2 of the random endowments of the agents is called the aggregate endowment.

(2) A pair (B1, B2) in (L∞)2 is called an allocation, while an allocation (B1, B2) such that B1 +B2 = E
is called a feasible allocation; the set of all feasible allocations will be denoted by F (E)

(3) For an allocation (B1, B2), the sum ν(b) (B1; γ1) + ν(b) (B2; γ2), denoted by σ(B1, B2), is called the

score of (B1, B2). The difference σ(B1, B2)−σ(E1, E2) is called the excess score (where, for simplicity,

the parameters γ1 and γ2 are omitted from the notation).

By (A.8), the expression ν(b)(B; γ2|E2)− ν(w)(B; γ1|E1) appearing in (3.9) above can be rewritten as

ν(b)(B; γ2|E2)− ν(w)(B; γ1|E1) = ν(b)(B; γ2|E2) + ν(b)(−B; γ1|E1) = (ν(b) (B + E2; γ2)− ν(b) (E2; γ2))

+ (ν(b) (−B + E1; γ1)− ν(b) (E1; γ1)) = σ(E1 −B, E2 +B)− σ(E1, E2).

(3.10)

So that

Σ(γ1, γ2, E1, E2) = sup {σ(B1, B2) : (B1, B2) ∈ F (E)} − σ(E1, E2).

In words, Σ is the maximized the excess score. If we think of the aggregate endowment E as the total wealth

of our two-agent economy, the solution of (3.9) (if it exists) will provide a redistribution of wealth so as to

maximize the (improvement in) the score. Even though there is no direct economic reason why the sum of

individual indifference prices should be maximized, Proposition 3.14 - which is a mere restatement of the

discussion above - explains why the score is a useful concept.

Proposition 3.14. For each B ∈ L∞, the following two statements are equivalent:

(1) B ∈ G◦, and

(2) σ(E1 −B, E2 +B) > σ(E1, E2).

The following proposition, which characterizes the score-optimal allocation, is a variation of Theorem 2.3

in Barrieu and El Karoui (2005) (see also Borch (1962) and Holmstrom and Milgrom (1987)).

Proposition 3.15. For any E1, E2 ∈ L∞ and γ1, γ2 > 0 there exists B∗ ∈ L∞ such that

σ(E1 −B∗, E2 +B∗) ≥ σ(B1, B2), for all (B1, B2) ∈ F (E).

Moreover, B∗ is unique up to replicability and

B∗ ∼ γ1E1 − γ2E2
γ1 + γ2

.
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Proof. By (3.10), it suffices to show that

ν(w) (−B∗ − E2; γ2) + ν(w) (B∗ − E1; γ1) ≤ ν(w) (−B − E2; γ2) + ν(w) (B − E1; γ1)(3.11)

for all B ∈ L∞, which is, in turn, a consequence of Lemma A.7. Indeed, it states that

ν(w) (B − E1; γ1) + ν(w) (−B − E2; γ2) ≥ ν(w) (−E1 − E2; γ̃) ,

with equality if and only if

γ1
γ̃ (B − E1) ∼ γ2

γ̃ (−B − E2), i.e., B ∼ γ1E1 − γ2E2
γ1 + γ2

.

�

Corollary 3.16. The following statements are equivalent:

(1) G◦ = ∅,
(2) B∗ = γ1E1−γ2E2

γ1+γ2
is replicable, and

(3) γ1
γ2
E1 ∼ E2.

Remark 3.17. We can relate the existence of mutually agreeable non-replicable claims with the well-known

notion of Pareto optimality. More precisely, an allocation (B1, B2) ∈ F (E) is called Pareto optimal if

@(C1, C2) ∈ F (E) s.t. Bi �γi,Ei Ci for i = 1, 2 and Bi ≺γi,Ei Ci for at least one i = 1, 2. It follows

from Corollary 3.16, that the condition γ1
γ2
E1 ∼ E2, implies that the allocation (E1, E2) is the unique (up to

replicability) Pareto optimal one. If γ1
γ2
E1 6∼ E2, a transaction involving the optimal claim B∗ will lead to a

Pareto optimal allocation.

4. Residual risk and an approximation of the indifference price

4.1. Agreement and the residual risk process. The notion of residual risk for the indifference price

valuation was defined in Musiela and Zariphopoulou (2004) for the setting of our Example 4.5., in Stoikov

and Zariphopoulou (2006) for the stochastic volatility model and in Musiela and Zariphopoulou (2005) for

a binomial-type model. This notion can be used to give a characterization of contingent claims in G (see

Propositions 4.2 and 4.4 below). Before we state this characterization, we give a short introduction to

residual risk in a static setting (see Appendix B for definitions and some properties in the dynamic setting).

4.1.1. Residual risk in a static setting. Let γ > 0 be a risk-aversion coefficient, and let B ∈ L∞ be a

contingent claim. It can be shown that the optimization problem with the value function uγ(x|ν(w) (B; γ)−
B), introduced in (3.1) admits an essentially unique maximizer ϑ(B) ∈ Θ (see Theorem A.3 in Appendix

A, Delbaen et al. (2002), page 105, Theorem 2.2 and Kabanov and Stricker (2002), page 127, Theorem 2.1).

The corresponding wealth process

X
(B)
t = ν(w) (B; γ) +

∫ t

0

ϑ(B)
u dSu,
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can be interpreted as the optimal risk-monitoring strategy for the writer of the claim B, compensated by

ν(w) (B; γ) at the initial time.

Let γ > 0 be a risk-aversion coefficient, and let B ∈ L∞ be a contingent claim. It can be shown that the

optimization problem with the value function uγ(x|ν(w) (B; γ)−B), introduced in (3.1), admits an essentially

unique maximizer ϑ(B) ∈ Θ (see Theorem A.3 in Appendix A, Delbaen et al. (2002), page 105, Theorem 2.2

and Kabanov and Stricker (2002), page 127, Theorem 2.1). Following the same notation, ϑ(0) ∈ Θ stands

for the optimal strategy without the claim. We then set ϑ̄(B)
t = ϑ

(B)
t −ϑ(0)

t , for all t ∈ [0, T ] (note that since

Θ is a vector space, ϑ̄(B) ∈ Θ). The corresponding wealth process

X
(B)
t = ν(w) (B; γ) +

∫ t

0

ϑ̄
(B)
u dSu,

can be interpreted as the optimal risk-monitoring strategy for the writer of the claim B, compensated by

ν(w) (B; γ) at the initial time. The hedging error

R(w)(B; γ) = B −X(B)
T(4.1)

is called the (writer’s) residual risk. R(w)(B; γ) can be interpreted as the risk remaining after the optimal

hedging has been performed. Note that R(w)(B; γ) = 0, a.s., for all replicable claims B ∈ L∞. In the

conditional case, an analogous discussion and the decomposition formula (see (A.8))

ν(w)(B; γ|E) = ν(w) (B − E ; γ)− ν(w) (−E ; γ) ,

allow us to define the conditional residual risk R(w)(B; γ|E) by

R(w)(B; γ|E) = R(w)(B − E ; γ)−R(w)(−E ; γ),

and obtain the following decomposition

(4.2) B = ν(w)(B; γ|E) +
∫ T

0

ϑ̄
(B|E)
t dSt +R(w)(B; γ|E),

where ϑ̄(B|E)
t = ϑ̄

(B−E)
t − ϑ̄(−E)

t = ϑ
(B−E)
t − ϑ(−E)

t , t ∈ [0, T ]. The process (ϑ̄(B|E)
t )t∈[0,T ], as well as

the decomposition (4.2), could have been derived equivalently using the optimization problems used to

define the conditional indifference prices. All of the above concepts have natural analogues when seen

from the buyer’s side. Namely, we define the (buyer’s) residual risk by R(b)(B; γ) = R(w)(−B; γ) and by

R(b)(B; γ|E) = R(b)(B + E ; γ)−R(b)(E ; γ) in the conditional case.

Remark 4.1. Using decomposition (4.2) and the Proposition A.2, we observe that

ν(b)(R(w)(B; γ|E); γ|E) = ν(b)(B; γ|E)− ν(w)(B; γ|E).

Hence, the agreement condition (3.7) can also be written as

B ∈ G ⇔ ν(b)(R(w)(B; γ|E); γ|E) ≥ 0.
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In particular, ν(b)(R(w)(B; γ|E); γ|E) < 0 for all E ∈ R∞, and B ∈ L∞ \ R∞. We also note that

ν(w)(R(w)(B; γ|E); γ|E) = 0, for all E , B ∈ L∞.

The following proposition gives a characterization of mutually agreeable contingent claims in terms of

their residual risk.

Proposition 4.2. For B ∈ L∞, the following statements are equivalent:

(1) B ∈ G,

(2) the inequality

(4.3) EQ
[
R(w)(B; γ1|E1)

]
+ EQ

[
R(b)(B; γ2|E2)

]
≥ 0

holds for some Q ∈Me,f .

(3) the inequality

(4.4) EQ
[
R(w)(B − E1; γ1)−R(w)(−E1; γ1)

]
+ EQ

[
R(w)(−B − E2; γ2)−R(w)(−E2; γ2)

]
≥ 0

holds for some Q ∈Me,f .

(4) the inequality (4.3) holds for all Q ∈Me,f .

(5) the inequality (4.4) holds for all Q ∈Me,f .

Proof. It suffices to make the following two observations

(a) thanks to the definition (4.1) of residual risk, the differences ν(w)(B; γ1|E1) − R(w)(B; γ1|E1) and

ν(b)(B; γ2|E2)−R(b)(B; γ2|E2) are both of the form
∫ T

0
ϑt dSt with ϑ ∈ Θ, and

(b) the following equality holds

R(w)(B; γ1|E1)−R(b)(B; γ2|E2) = R(w)(B − E1; γ1)−R(w)(−E1; γ1)

+R(w)(−B − E2; γ2)−R(w)(−E2; γ2). �

Remark 4.3. It should be pointed out that it is enough to check the above inequalities just for some probability

measure in Me,f . Also, it follows from the definition of the residual risk that the inequality (4.1) implies

that the transaction of claim B at any price p will decrease the sum of expected residual risks. If in addition

p ∈ (ν(w)(B; γ1|E1), ν(b)(B; γ2|E2)), each agent’s expected residual risk will be decreased.

Under the additional mild assumption of continuity for the filtration F, we can replace the criterion given

in Proposition 4.2 by the following one (see Appendix B for the additional notation), which sometimes is

easier to check.
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Proposition 4.4. Suppose that F is continuous. For B ∈ L∞, the following two statements are equivalent:

(1) B ∈ G, and

(2)

γ1EQ(0)
[〈
R(w)(B − E1; γ1)

〉
T
−
〈
R(w)(−E1; γ1)

〉
T

]
+

+ γ2EQ(0)
[〈
R(w)(−B + E2; γ2)

〉
T
−
〈
R(w)(E2; γ2)

〉
T

]
≥ 0

Proof. The equivalence follows from Proposition 4.2 and part (2) of Theorem B.1, which effectively state that〈
R(w)(B; γ)

〉
t

=
〈
L(w)(B; γ)

〉
t

for all t ∈ [0, T ], so that R(w)(B; γ) − γ
2

〈
R(w)(B; γ)

〉
T

is a Q(0)-martingale,

for any γ > 0 and B ∈ L∞. �

Example 4.5. This example is set in an incomplete financial market similar to the one considered in

Musiela and Zariphopoulou (2004) (see, also, Henderson (2002)). The market consists of one risky asset

S = (St)t∈[0,T ] with dynamics

dSt = St
(
µ(t) dt+ σ(t) dW (1)

t

)
and an additional (non-traded) factor Y = (Yt)t∈[0,T ] which evolves is a unique strong solution of

dYt = b(Yt, t) dt+ a(Yt, t)
(
ρdW

(1)
t + ρ′dW

(2)
t

)
,

where W (1) = (W (1)
t )t∈[0,T ] and W (2) = (W (2)

t )t∈[0,T ] are two standard independent Brownian Motions

defined on a probability space (Ω,F, (Ft),P). The constant ρ ∈ (−1, 1) is the correlation coefficient and

ρ′ :=
√

1− ρ2. We assume that the deterministic functions µ, σ : [0, T ]→ R are uniformly bounded (σ > 0).

By Theorem 3 in Musiela and Zariphopoulou (2004) (in Musiela and Zariphopoulou (2004) µ and σ are

constants, but their arguments carry over to our setting), we have that

(4.5) v(w) (B; γ) =
1

γ (1− ρ2)
ln
{
EQ(0)

(
eγ(1−ρ2)B

)}
,

for any payoff B ∈ L∞, such that B = g(YT ) for some bounded Borel function g : R → R, where the

Radon-Nikodym derivative of Q(0) is given by

dQ(0)

dP
= exp

(∫ T

0

1
2
λ2(t)dt+

∫ T

0

λ(t)dW (1)
t

)
,

and λ(t) := µ(t)
σ(t) is the Sharpe ratio of S.

Let us further suppose that E1 = g1(YT ) and E2 = g2(YT ) for some Borel bounded functions g1 and g2.

Proposition 3.4 and representation (4.5) imply that that B = g(YT ) ∈ G if and only ifEQ(0)
(
eγ1B̃e−γ1Ẽ1

)
EQ(0)

(
e−γ1Ẽ1

)


γ2
γ1

≤
EQ(0)

(
e−γ2Ẽ2

)
EQ(0)

(
e−γ2Ẽ2e−γ2B̃

)
where B̃ = (1− ρ2)B and Ẽi = (1− ρ2)Ei, i = 1, 2.
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As we have seen, ν(w) (B; γ1) > ν(b) (B; γ2), ∀B � 0. It is easy to verify that ν(w)(B; γ1|E1) ≤ ν(w) (B; γ1)

if and only if CovQ(0)
(E1, B) ≥ 0, where CovQ(0)

(., .) is the covariance under the measure Q(0). This means

that the presence of random endowment which is positively correlated with the claim payoff, reduces the

writer’s indifference price. Similarly, ν(b)(B; γ2|E2) ≥ ν(b) (B; γ2) if and only if CovQ(0)
(E2, B) ≤ 0. Therefore,

we infer that a necessary condition for a claim B to be mutually agreeable is that CovQ(0)
(E1, B) > 0 or

CovQ(0)
(E2, B) < 0.

4.2. An asymptotic approximation of indifference prices. When the size of the claim whose price

is negotiated is small compared to the sizes of agent’s contingent claims (and this is typically the case in

practice), one can use a Taylor-type expansion of the indifference price around 0, and obtain more precise

quantitative answers to the agreement question. More precisely, we assume that claim under consideration

has the form α ·B for a some vector B = (B1, . . . , Bn) in (L∞)n, where α ∈ Rn should be interpreted as a

small parameter. We start with a single agent’s point of view and present an approximation result for the

indifference price ν(w)(α ·B; γ|E) of α ·B, where E ∈ L∞ and γ > 0. To alleviate the notation, we shorten

ν(w)(α ·B; γ|E) to w(α), for α ∈ Rn.

A straightforward extension of Theorem 5.1 on page 590 in Ilhan et al. (2005), where we use the fact

that the conditional indifference prices are just the unconditional ones under a changed measure, yields the

following result:

Proposition 4.6. The function w is continuously differentiable on Rn with

∇w(α) = EQ(γα·B−γE)
[B] =

(
EQ(γα·B−γE)

[B1], . . . ,EQ(γα·B−γE)
[Bn]

)
, α ∈ Rn.

The concept of minimized variance, defined below, is important for the study of second derivatives of the

function w.

Definition 4.7. Let Q ∈Me be an arbitrary martingale measure.

(1) For B ∈ L∞ we define the projected variance ∆Q(B) of B under Q as :

(4.6) ∆Q(B) = inf
ϑ∈Θ2

Q

EQ [(B − EQ[B]− (ϑ · S)T )2
]
,

where, Θ2
Q = {ϑ ∈ L(S) : (ϑ · S) is square integrable martingale under Q}, so that

⋂
Q∈Me,f

Θ2
Q ⊂ Θ.

(2) For B1, B2 ∈ L∞ we define the projected covariance ∆Q(B1, B2) of B1 and B2 by polarization:

∆Q(B1, B2) = 1
2 (∆Q(B1 +B2)−∆Q(B1)−∆Q(B2)).

(3) For a vector B = (B1, . . . , Bn) ∈ (L∞)n and a probability measure Q ∈ Me, we define the Q-

projected variance-covariance matrix ∆Q(B) by

∆Q
ij(B) = ∆Q(Bi, Bj), i, j = 1, . . . , n.
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Remark 4.8.

(1) The projected variance ∆Q(B) is the square of the L2(Q)-norm of the projection PQ(B) of the

random variable B ∈ L∞ ⊆ L2(Q) onto the closed subspace R ⊕
{

(ϑ · S)T : ϑ ∈ Θ2
Q
}

of L2(Q)

(the closeness of
{

(ϑ · S)T : ϑ ∈ Θ2
Q
}

in L2(Q) is an immediate consequence of the L2(d[S])-L2(Q)

isometry of stochastic integration). It follows that the projected covariance ∆Q(B1, B2) can be

represented as

∆Q(B1, B2) = EQ[PQ(B1)PQ(B2)].

In particular, ∆Q(·, ·) is a bilinear functional on L∞ × L∞ and the following equality holds

∆Q(α ·B) = α ·∆Q(B)α =
n∑

i,j=1

αi∆
Q
ij(B)αj ,(4.7)

for all Q ∈Me, B ∈ (L∞)n and α = (α1, . . . , αn) ∈ Rn.

(2) Details on the notion of the projected variance, which is closely related to mean-variance hedging,

can be found in Föllmer and Sondermann (1986) or Schweizer (2001). Note that the existence of

the minimizer in the Definition 4.7 for bounded claims can be established using Kunita-Watanabe

decomposition of the uniformly integrable Q-martingale (Bt)t∈[0,T ] defined as Bt = EQ[B|Ft]. For

details on the Kunita-Watanabe decomposition we refer the reader to Ansel and Stricker (1993).

We remind the reader that a filtration is called continuous if all adapted local martingales admit continuous

versions.

Lemma 4.9. Suppose that n = 1 and that the filtration F is continuous. Then for B, E ∈ L∞, the function

w : R→ R is twice differentiable at any α ∈ R and its second derivative is given by

(4.8) w′′(α) = γ∆Q(γαB−γE)
(B).

Proof. Without loss of generality we may suppose that E = 0 - otherwise, we just work under the measure

P−γE . Let us focus on the case α = 0, where first derivative w′(0) is equal to EQ(0)
[B] by Proposition 4.6,

so a simple translation by a constant (under which ∆ is clearly invariant) allows us to assume, in addition,

that EQ(0)
[B] = 0. It will be enough, therefore, to show that

lim
α→0

∣∣∣∣ν(w) (αB; γ)
α2

− γ
2 ∆Q(0)

(B)
∣∣∣∣ = 0.

By the sign invariance of ∆(·) and the scaling property (A.3) of the indifference prices, it suffices to consider

only α > 0, i.e., it is enough to establish that

lim
α↘0

∣∣∣∣ν(w) (B;αγ)
α

− γ
2 ∆Q(0)

(B)
∣∣∣∣ = 0(4.9)
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Theorem B.1 and the definition of the residual risk in Appendix B state that

ν(w) (B;αγ)
α

=
γ

2
EQ(0)

[〈L(w)(B;αγ)〉T ] =
γ

2
EQ(0)

[L(w)
T (B;αγ)2],

where (L(w)
t (B;αγ))t∈[0,T ] is as in Theorem B.1. The BMO-convergence of the processes (L(w)

t (B;αγ))t∈[0,T ]

from the same theorem, implies, in particular, the L2(Q(0))-convergence of their terminal values, i.e.,

L
(w)
T (B;αγ)→ L

(w)
T (B; 0) in L2(Q(0)).

Therefore, it remains to prove that

EQ(0)
[
L

(w)
T (B; 0)2

]
= ∆Q(0)

(B), ∀B ∈ L∞.

Thanks to the final part of Theorem B.1, L(w)(B; 0) is strongly orthogonal to any process of the form (ϑ ·S),

for ϑ ∈ Θ2
Q(0) . In particular, for ϑ ∈ Θ2

Q(0) and ϑ̂
(B)

as in Theorem B.1, we have

B − (ϑ · S)T =
(
(ϑ̂

(B)
− ϑ) · S

)
T

+ L
(w)
T (B; 0),

so that

EQ(0) [
(B − (ϑ · S)T )2

]
= E

[((
(ϑ̂

(B)
− ϑ) · S

)
T

)2
]

+ E
[
L

(w)
T (B; 0)2

]
.

Consequently, the minimum in the definition of ∆Q(0)
[B] is attained at ϑ = ϑ̂

(B)
so that ∆Q(B) =

EQ(0)
[L(w)
T (B; 0)2], which is the equality we set out to prove.

For α 6= 0, we may again suppose that w′(α) = EQ(γαB)
[B] = 0. Hence, it is enough to show that

limε→0
w(α+ε)−w(α)

ε2 = γ
2 ∆Q(αγB)

(B). For this, we note that w(α + ε) − w(α) = v(w)(εB| − αB; γ) i.e., we

can rewrite the second derivative at some α 6= 0 as the second derivative at α = 0 with random endowment.

This observation finishes the proof. �

The case n > 1 is covered by the following lemma.

Lemma 4.10. For α, δ ∈ Rn, B = (B1, . . . , Bn) ∈ (L∞)n and E ∈ L∞, we have

lim
ε→0

w(α+ εδ)− w(α)− ε∇w(α) · δ
ε2

= 1
2

n∑
i,j=1

δi∆
Q
ij(B)δj .(4.10)

Proof. We can assume that α = (0, . . . , 0) by absorbing the term −α · B into the random endowment E .

The left-hand side of (4.10) can now be understood as the second derivative at 0 of the function w̃ : R→ R

given by

w̃(ε) = ν(w)(εδ ·B; γ|E).

We can finish the proof by employing Lemma 4.9 and using the equality (4.7) with Q = Q(−γE) and δ

substituted for α. �

With the above results in our toolbox, we can give a second order directional Taylor-type approximation

of the indifference price.
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Proposition 4.11. Choose B ∈ (L∞)n, α ∈ Rn, γ > 0 and E ∈ L∞, and assume that the filtration F is

continuous. With the notions of projected variance and covariance as in Definition 4.7, we have the following

equality

ν(w)(εα ·B; γ|E) = εα · EQ(−γE)
[B] +

ε2γ

2
α ·∆Q(−γE)

(B)α+ o(ε2), as ε→ 0.(4.11)

Remark 4.12. An approximation formula similar to (4.11) is given in Kramkov and Sirbu (2006), Theorem

10, where the authors consider utility functions defined on the positive real line.

Although the asymptotic expansion (4.11) in Proposition 4.11 above is important in its own right, its

main application is the following criterion for mutual agreement for a small quantity of a given contingent

claim.

Proposition 4.13. Suppose that F is continuous and that the random endowments E1, E2 ∈ L∞ and risk-

aversion coefficients γ1, γ2 > 0 are chosen. Let B ∈ L∞ be a given contingent claim. The set G◦ contains a

segment of the form

{αB : α ∈ (0, α0)} for some α0 > 0 if and only if EQ(−γ1E1)
[B] < EQ(−γ2E2)

[B],

and similarly, the set G◦ contains a segment of the form

{αB : α ∈ (−α0, 0)} for some α0 > 0 if and only if ,EQ(−γ1E1)
[B] > EQ(−γ2E2)

[B].

Proof. We first note that the convexity of G◦ implies that if ∃ α0 > 0 such that α0B ∈ G◦, then αB ∈ G, ∀α ∈
[0, α0]. By equation (4.11), ν(w)(αB; γ1|E1) = αEQ(−γ1E1)

[B] + o(α) and ν(b)(αB; γ2|E2) = αEQ(−γ2E2)
[B] +

o(α). Hence, the inequality EQ(−γ1E1)
[B] < EQ(−γ2E2)

[B] yields that there exists α0 > 0 small enough such

that ν(w)(α0B; γ1|E1) < ν(b)(α0B; γ2|E2), i.e., α0B ∈ G◦.
On the other hand, suppose that there exists α0 > 0 such that α0B ∈ G◦ and assume that EQ(−γ1E1)

[B] ≥
EQ(−γ2E2)

[B]. It is easy to check that ∆Q(−γiEi)(B) > 0 for i = 1, 2 (since B /∈ R∞) and that by (4.11) and

its buyer’s version, we get

αEQ(−γ1E1)
[B] +

α2γ1

2
∆Q(−γ1E1)

(B) < αEQ(−γ2E2)
[B]− α2γ2

2
∆Q(−γ2E2)

(B) + o(α2)

for every α close to zero such that 0 < α ≤ α0 (note that thanks to the linearity of Θ2
Q, we have ∆Q(B) =

∆Q(−B), ∀B ∈ L∞).

This gives that for any such α

α2

2
(γ1∆Q(−γ1E1)

(B) + γ2∆Q(−γ2E2)
(B)) + o(α2) < 0,

Dividing through by α2 and letting α → 0, we get that γ1∆Q(−γ1E1)
(B) + γ2∆Q(−γ2E2)

(B) ≤ 0, which is a

contradiction. The proof of the second argument is similar and hence omitted. �



21

Remark 4.14. Proposition 4.13 can be used to provide an approximation of the size of the set of the agreement

prices for small number of units. More precisely, if EQ(−γ1E1)
[B] 6= EQ(−γ2E2)

[B], it holds that

(4.12) ν(b)(αB; γ2|E2)− ν(w)(αB; γ1|E1) =

= α(EQ(−γ2E2)
[B]− EQ(−γ1E1)

[B])− α2

2
(γ1∆Q(−γ1E1)

(B) + γ2∆Q(−γ2E2)
(B)) + o(α2)

for every α ∈ R close to zero such that αB ∈ G◦. Another application of Proposition 4.13 is given at the

first part of Remark 5.10.

A second order approximation of the optimal strategy has been recently given in Kramkov and Sirbu (2006)

for general utilities defined on the positive real line. For the Example 4.5, the corresponding approximation

result is easily obtained for the unconditional case by the formula (4.5) (see, e.g., Henderson (2002)). After

changing the measure P to P−γE , it is straightforward to show that

ν(w)(αB; γ|E) = αEQ(−γE)
[B] +

α2

2
γ(1− ρ2) VarQ(−γE)

(B) + o(α2), ∀B ∈ L∞,

where VarQ(B) denotes the variance of random variable B under the probability measure Q.

Example 4.15. In the cases where there is no closed-form expression for the indifference price, the ap-

proximation (4.11) is rather useful. One of these cases is the stochastic volatility model studied in Sircar

and Zariphopoulou (2005) and Ilhan et al. (2004) (see also Henderson (2007)). Proposition 4.13 is then a

generalization of the approximation results of Ilhan et al. (2004), subsection 4.3.

5. Partial equilibrium prices

This section deals with the existence and the uniqueness of a partial equilibrium price of a contingent claim

in the simplified two-agent economy. The discussion of mutual agreeability in previous sections assumed that

the number of units is fixed and the claim is indivisible. If, however, the negotiation between agents involves

the quantity traded as well as the price, and if this quantity is not constrained by quantization, a great deal

more can be said about the outcome of the negotiation. The main advantage is that the methodology of

equilibrium theory can be applied and a unique price-quantity pair singled out on the basis of the fundamental

economic principle of market clearing. We stress that the agents take the form of the claims as given and do

not engage in any form of optimal design, as is the case in many real-world situations in insurance, illiquid

markets, bulk sales of shares, etc.

5.1. The partial equilibrium. A vector B = (B1, . . . , Bn) ∈ (L∞)n of contingent claims is chosen and

kept constant throughout this section. The extended set R ∪ {±∞} of real numbers is denoted by R.
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It will be notationally convenient to define the “restrictions” U i : Rn × Rn → R, i ∈ {1, 2} of the value

functions uγ1(·|E1) and uγ2(·|E2) (see (3.1)) by

U i(α;p) =

uγi(α · (B − p)|Ei), α ∈ Rn,

lim supα′→α,α′∈Rn U i(α′;p), α ∈ Rn \ Rn,
i ∈ {1, 2} , p ∈ Rn.(5.1)

i.e., U i(·;p) is the extension of the continuous function U i(·;p)
∣∣∣
Rn

to Rn by upper semi-continuity and gives

the indirect utility of agent i when she holds α units of B, purchased at price p.

Definition 5.1. The demand correspondence Zi : Rn → 2Rn , for the agent i ∈ {1, 2}, is defined by

Zi(p) = argmax
{
U i(α,p) : α ∈ Rn

}
, p ∈ Rn.(5.2)

Intuitively, the elements of Zi(p) give the numbers of units of B that agent i is willing to purchase at

price p (the numbers of units that maximize her indirect utility). Using the above notation and definition,

we are ready to introduce the central concept of this section:

Definition 5.2. A pair (p,α) ∈ Rn × Rn is called a partial-equilibrium price-quantity (PEPQ) if

α ∈ Z1(p) and −α ∈ Z2(p).(5.3)

A vector p ∈ Rn for which there exists α ∈ Rn such that (p,α) is a PEPQ is called a partial-equilibrium

price (PEP).

In other words, the PEP is the price-vector of the contingent claim B at which the quantity that one

agent is willing to sell is equal to the quantity which the other agent is wants to buy.

When there exists α ∈ Rm such that the contingent claim α ·B is replicable, any PEP p must have the

property that α · p = pNA, where pNA is the replication price of α ·B; this will hold no matter what the

characteristics of the agents are. It is, therefore, only reasonable to assume that such claims do not enter

the negotiation, i.e., we enforce the following assumption for the remainder of the section:

Assumption 5.3. There exists no α ∈ Rn \ {0} such that α ·B ∼ 0.

5.2. Properties of the demand functions. Let PNA ⊆ Rn be the set of all arbitrage-free price-vectors

of the contingent claims B, i.e.,

PNA =
{
EQ[B] : Q ∈Me

}
,

where, as usual, EQ[B] = (EQ[B1], . . . ,EQ[Bn]) ∈ Rn. To simplify the notation in the sequel, we introduce

two n-dimensional families of measures in Me, parametrized by α ∈ Rn:

Q(α)
i = Q(γiα·B−γiEi), α ∈ Rn, i = 1, 2.
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As we will see below (see Proposition 5.6), when we are looking for partial equilibrium prices, we can restrict

ourselves to the sets

PUi =
{
EQ(α)

i [B] : α ∈ Rn
}
, for i = 1, 2.

In general, PUi ⊆ PNA, for i = 1, 2. The equality holds when Ei ∼ 0 (see Ilhan et al. (2005), Lemma 7.1).

For future use, we define the function ui : Rn → R by ui(p) = sup
α∈R̄n

{U i(α;p)}, for i ∈ {1, 2}. Building on

the notation of Section 4, we also introduce the following two shorthands:

(5.4)
wi(α) = ν(w)(α ·B; γi|Ei)

bi(α) = ν(b)(α ·B; γi|Ei)

 α ∈ Rn, i ∈ {1, 2} .

Lemma 5.4. For i = 1, 2, wi is strictly convex and bi is strictly concave.

Proof. A change of measure argument (where we replace P by P−γiEi) can be employed to justify no loss of

generality if we assume that Ei = 0 in this proof. The fact that wi(·) is convex follows from the convexity of

the indifference price. In order to establish that the convexity is, in fact, strict, we assume, to the contrary,

that there exist α1,α2 ∈ Rn with α1 6= α2 and λ ∈ (0, 1) such that

wi(λα1 + (1− λ)α2) = λwi(α1) + (1− λ)wi(α2).

Equivalently, we have

ν(w) ((λα1 + (1− λ)α2) ·B; γi) = ν(w)
(
λα1 ·B; γiλ

)
+ ν(w)

(
(1− λ)α2 ·B; γi

1−λ

)
Since (γiλ )−1 + ( γi

1−λ )−1 = (γi)−1, we can use Lemma A.7 to conclude that

α1 ·B ∼ α2 ·B, i.e. α ·B ∼ 0, where α = α1 −α2 6= 0 ∈ Rn,

a contradiction with Assumption 5.3. A similar argument can be employed to prove strict concavity of bi,

i ∈ {1, 2}. �

Proposition 5.5. For i ∈ {1, 2}, the functions ui(·) and Zi(·) have the following properties

(1) The maximum in (5.2) is always attained, i.e. Zi(p) 6= ∅, for all p ∈ Rn.

(2) For p ∈ Rn, we have

Zi(p) = argmaxα∈Rn{ν(b)(α ·B; γi|Ei)−α · p}.(5.5)

(3) Either Zi(p) = {α} for some α ∈ Rn or Zi ⊆ R
n \ Rn.

(4) Zi(p) = {α} if and only if EQ(α)
i [B] = p (in particular, p ∈ PUi ).

Proof.

(1) It follows from the fact that the function Zi is upper semi-continuous on the compact space Rn.
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(2) It suffices to observe that (3.6) implies that

ui(p) = − exp{−γi sup
α∈R̄n

(ν(b)(α ·B; γi|Ei)−α · p)} ·
(
− uγi(0|Ei)

)
, for all p ∈ Rn.(5.6)

(3) The set Zi(p) is convex, so if it contains a point in Rn and a point in Rn \ Rn, it must contain

infinitely many points in Rn. This is in contradiction with the strict concavity of bi on Rn.

(4) Proposition 4.6 states that bi is continuously differentiable on Rn and that ∇bi(α) = EQ(−α)
i [B].

Therefore, ν(b)(α · B; γi|Ei) − α · p is a concave and differentiable function of α ∈ Rn and its

derivative is given by EQ(−α)
i [B] − p. Consequently, ν(b)(α ·B; γi|Ei) − α · p attains its maximum

on Rn if and only if EQ(−α)
i [B] = p has a solution α ∈ Rn. In that case, Zi(p) = {α}.

�

Proposition 5.6. A pair (p̂, α̂) is a PEPQ if and only if p̂ ∈ PU1 ∩ PU2 , α ∈ Rn and

(5.7) EQ(α̂)
1 [B] = EQ(−α̂)

2 [B] = p̂.

Proof. If (p̂, α̂) is a PEPQ, then Zi(p̂) ∩ Rn 6= ∅ and, so, by Proposition 5.5, part (3), we must have

Zi(p̂) = {αi}, for some αi ∈ Rn and p̂ ∈ PUi , for i = 1, 2. By (5.3), we have α1 = −α2. The equalities in

(5.7), with α̂ = α1 follow directly from part (4) of Proposition 5.5.

Conversely, suppose that (5.7) holds. Then, by part (4) of Proposition 5.5, we have Z1(p) = {α̂} and

Z2(p) = {−α̂}, which, in turn, implies (5.3). �

We have also shown the following result which will be used shortly:

Corollary 5.7. A pair (p̂, α̂) ∈ (PU1 ∩ PU2 )× Rn is a PEPQ if and only if

w1(α̂)− b2(α̂) ≤ w1(α)− b2(α) for any α ∈ Rn, and p̂ = ∇w1(α̂).

The main result of this Section is presented in the following Theorem:

Theorem 5.8. Let E1, E2 ∈ L∞, γ1, γ2 > 0 and B ∈ (L∞)n be arbitrary, and suppose that the Assumption

5.3 is satisfied. Then, there exists a unique partial equilibrium price-quantity (α,p) ∈ Rn × Rn. Moreover,

p ∈ PU1 ∩ PU2 .

Proof. If the PEPQ (α,p) exists, then α globally minimizes the strictly concave function w1− b2, so it must

be unique. To establish existence, it will be enough to solve the equation ∇f = 0, where f = w1 − b2.

Assume, to the contrary, that ∇f(α) 6= 0, for all α ∈ Rn. Continuity of f implies that for each m ∈ N there

exists αm ∈ Bm = {α ∈ Rn :
∑n
i=1 |αi| ≤ m} such that f(αm) ≤ f(α) for all α ∈ Bm. Thanks to strict

convexity of f and the fact that ∇f 6= 0 on Bm, we must have ||αm||1 = m, where ||α||1 =
∑n
i=1 |αi|. In

order to reach a contradiction, it will be enough to show that

lim inf
m→∞

f(αm)
m > 0.(5.8)
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Indeed, (5.8) would provide the following coercivity condition

lim inf
m→∞

inf
{
f(α)
||α||1

: α ∈ Bm \ {0}
}
> 0,

which, in turn, would guarantee existence of a global minimizer α0 ∈ Rn for f (see Chapter 1 of Borwein

and Lewis (2000)), at which ∇f(α0) = 0 holds.

The first step in the proof of (5.8) uses the representation (A.8) and the risk-measure properties of

ν(w)(·; γ|E) to obtain the following:

lim inf
m→∞

f(αm)
m

= lim inf
m→∞

1
m

(
ν(w) (αm ·B − E1; γ1) + ν(w) (−αm ·B − E2; γ2)

)
≥ lim inf

m→∞

1
m

(
ν(w) (αm ·B; γ1)− ||E1||L∞ + ν(w) (−αm ·B; γ2)− ||E2||L∞

)
= lim inf

m→∞

(
ν(w)

(
1
mαm ·B;mγ1

)
+ ν(w)

(
− 1
mαm ·B;mγ2

) )(5.9)

Any subsequence of N through which the last limit inferior in (5.9) above is realized admits a further

subsequence (mk)k∈N such that the sequence 1
mk
αmk converges to some α0 ∈ Rn with ||α0||1 = 1; indeed,

the full sequence ( 1
mαm)m∈N takes values in the compact set {α ∈ Rn : ||α||1 = 1}. Proposition A.14 implies

that

ν(w)
(

1
mk
αmk ·B;mkγ1

)
→ sup

Q∈Me

EQ[α0 ·B], and

ν(w)
(
− 1
mk
αmk ·B;mkγ2

)
→ − inf

Q∈Me

EQ[α0 ·B],
(5.10)

as k →∞. Therefore,

lim inf
m→∞

1
mf(αm) = sup

Q∈Me

EQ[α0 ·B]− inf
Q∈Me

EQ[α0 ·B].

It remains to note that the equality supQ∈Me
EQ[α0 · B] = infQ∈Me

EQ[α0 · B] cannot hold; if it did,

Assumption 5.3 would be violated. �

Remark 5.9. The concept of the partial equilibrium pricing as stated in Definition 5.2 has its roots in

the classic market clearing equilibrium arguments (see e.g., Border (2003), Chapter 6 of Magill and Quinzii

(1996) etc. for the mathematical overview). The above proof of the existence of the PEPQ (and its uniqueness

guaranteed by Assumption 5.3) differs from the classical scheme in the following sense: the special properties

of the exponential utility and, in particular, the form of the induced demand function, allow us to derive

an explicit expression for the PEPQ; namely, it is given as the minimizer of the difference w1(α) − b2(α).

Additionally, and unlike the classical approach, such a constructive expression opens a possibility of efficient

numerical computation in many cases of interest.

Remark 5.10.

(1) When n = 1, the proof above can be simplified considerably; one can show that

lim
α→∞

w′1(α) > lim
α→∞

b′2(α) and lim
α→−∞

w′1(α) < lim
α→−∞

b′2(α),
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and deduce the existence of the solution of the equation w′1(α) = b′2(α) directly.

In addition, by Remark 4.14, we easily get that the quantity α̃ = EQ(−γ2E2)
[B]−EQ(−γ1E1)

[B]

γ1∆Q(−γ1E1)
(B)+γ2∆Q(−γ2E2)

(B)

minimizes the second order approximation of the difference w1(α) − b2(α). In view of Corollary

5.7, we can heuristically consider α̃ as an approximation of the partial equilibrium quantity (PEQ),

provided that α̃ is close to zero.

(2) Corollary 3.16 and the discussion preceding it show that when γ1
γ2
E1 ∼ E2, the unique PEPQ must be

of the form (0,p), where p = EQ(−γ1E1)
[B] = EQ(−γ2E2)

[B] for every B which satisfies the Assump-

tion 5.3. In such cases p should not be interpreted as a price of B, since no transaction actually

occurs. Furthermore, the strict agreement (in the sense of Definition 3.3) can then be reached for

no contingent claim of the from α ·B, α ∈ Rn.

Even when γ1
γ2
E1 � E2, there might exist claims for which the PEPQ is of the form (0,p). In

fact, PEPQ is of the form (0,p) if and only if EQ(−γ1E1)
[B] = EQ(−γ2E2)

[B] (see Proposition 4.13).

As an example, consider a claim B which is independent of the stochastic process S, as well as

the two random endowments. The partial equilibrium price is then simply a certainty equivalent

p = E[B] = EQ(−γ1E1)
[B] = EQ(−γ2E2)

[B].

If a vector of claims B satisfies the Assumption 5.3 and its PEPQ is of the form (0,p), then

ν(w)(α ·B; γ1|E1) − ν(b)(α ·B; γ2|E2) > 0, for every α ∈ Rn \ {0}, i.e. α ·B /∈ G for all α 6= 0. In

other words, any trade in a nontrivial linear combination α ·B must make at least one of the agents

strictly worse off.

Appendix A. Conditional Indifference Prices

The subject of this Section is the conditional indifference price and some of its properties. The results

stated below are not only very useful for our analysis mutually agreeability, they may also be seen as

interesting in their own right since they describe some of the aspects of indifference evaluation under the

presence of random endowment. Some new results about the unconditional indifference price (see Lemma

A.7, Propositions A.10, A.11 and A.14), as well as several generalizations of existing results in the case of

the conditional price (see Theorem A.3, Propositions A.5 and A.13) are exhibited.

A.1. First properties. We remind the reader that the writer’s and buyer’s conditional (relative) indiffer-

ence prices ν(w)(B; γ|E) and ν(w)(B; γ|E), for B ∈ L∞, are defined as

ν(w)(B; γ|E) = inf {p ∈ R : p−B ∈ Aγ(E)} , ν(b)(B; γ|E) = sup {p ∈ R : B − p ∈ Aγ(E)} ,

where Aγ(E) = {B ∈ L∞ : uγ(B|E) ≥ uγ(0|E)}, with the notation introduced on page 7 at the beginning of

Section 3. Proposition A.1 collects some basic properties of the indifference prices and its proof is standard.
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Proposition A.1.

(1) ν(b)(B; γ|E) = −ν(w)(−B; γ|E), for B ∈ L∞.

(2) When E ∈ R∞ (in particular, when E is constant) ν(w)(·; γ|E) and ν(b)(·; γ|E) coincide with their

unconditional versions ν(w) (·; γ) and ν(b) (·; γ).

(3) More generally, we have ν(w)(·; γ|E) = ν(w)(·; γ|E ′) and ν(b)(·; γ|E) = ν(b)(·; γ|E ′) as soon as E ∼ E ′.

When E is constant or, more generally, when E ∈ R∞, ν(w)(·; γ|E) and ν(b)(·; γ|E) are usually denoted by

ν(w) (·; γ) and ν(b) (·; γ), and are called the (writer’s and buyer’s) unconditional indifference prices.

A.2. Conditional indifference prices as convex risk measures. With the notation from subsection

2.4, the conditional indifference price ν(w)(·; γ|E) can be understood as an unconditional indifference price

computed under the probability measure P−γE . In particular, using the terminology of Föllmer and Schied

(2004), Section 4.8, the following statement holds:

Proposition A.2. Maps B 7→ ν(w)(−B; γ|E) and B 7→ −ν(b)(B; γ|E) are replication-invariant convex risk

measures on L∞, where replication-invariance refers to the following property

ν(w)(B + (ϑ · S)T ; γ|E) = ν(w)(B; γ|E), for all ϑ ∈ Θ.

Moreover, these measures admit a robust dual representation, as stated in the following theorem, which

follows from Theorem 2.2 in Delbaen et al. (2002) and Theorem 2.1 in Kabanov and Stricker (2002):

Theorem A.3. (Delbaen F., Grandits P., Rheinländer T., Samperi D., Schweitzer M. and Stricker C.,

2002, Kabanov Y. and Stricker C., 2002)

For B ∈ L∞, we have

(A.1) ν(w)(B; γ|E) = sup
Q∈Ma

{
EQ (B)− 1

γ
h−γE(Q)

}
,

where, for C ∈ L∞, we define the map hC : L1 7→ [0,+∞] as

hC(Q) =

H(Q|PC)−H(Q(C)|PC) when Q ∈Ma,

+∞ otherwise.

The supremum in (A.1) is uniquely attained by the measure Q(−γE+γB), which belongs in Me,f and its

Radon-Nikodym derivative with respect to P−γE+γB can be written as

dQ(−γE+γB)

dP−γE+γB
= ke(−γϑ(−γE+γB)·S)T ,(A.2)

where ϑ(−γE+γB) ∈ Θ is the maximizer of the control problem associated with the value function uγ(−B|E).

Corollary A.4. The maps B 7→ ν(w)(B; γ|E) and B 7→ ν(b)(B; γ|E) are, respectively, lower and upper

semi-continuous with respect to the weak-* topology σ(L∞,L1).
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Proof. It suffices to note that (A.1) represents ν(w)(·; γ|E) as a supremum of σ(L∞,L1)-continuous and linear

functionals on L∞. �

The function h−γE(·) in Theorem A.3 is sometimes called the penalty function for the indifference price

ν(w)(·; γ|E), and is clearly convex (strictly convex on its effective domainMe, f). It is well known (see, e.g.,

Föllmer and Schied (2004), Lemma 3.29) that the conjugate representation,

E[X logX] = sup
Y ∈L∞

(
E[Y X]− logE[eY ]

)
,

where we use the convention that x log(x) = +∞, for x < 0, is valid for all X ∈ L1. Using this representation

and the natural identification of finite measures equivalent to P with their Radon-Nikodym derivatives in

L1, we can readily establish the following properties of the penalty function h:

Proposition A.5. For C ∈ L∞, hC : L1 7→ [0,+∞] is convex (strictly on its effective domain) and

σ(L1,L∞)-lower semicontinuous.

An immediate corollary of Proposition A.5 and the Hahn-Banach Theorem in the separation form (see

Föllmer and Schied (2004) for details on convex analysis and Jouini et al. (2006), Theorem 2.1) is the

following result:

Proposition A.6. The map h−γE is the minimal penalty function for ν(w)(·; γ|E), i.e.

h−γE(Q) ≤ h̃(Q), for all Q ∈Ma,

whenever the function h̃ satisfies

ν(w)(B; γ|E) = sup
Q∈Ma

(
EQ (B)− 1

γ
h̃(Q)

)
, for all B ∈ L∞.

Moreover, we have the following, dual, conjugate representation

1
γ
h−γE(Q) = sup

B∈L∞

(
EQ[B]− ν(w)(B; γ|E)

)
, ∀Q ∈ L1(Ω,FT ,P−γE).

A.3. Some auxiliary results. Using the linearity of the set Θ of the admissible trading strategies and

the properties of the exponential utility, one can deduce (see Becherer (2001), Chapter 1) that the following

scaling property holds true:

αν(w) (B;αγ) = ν(w) (αB; γ) , for B ∈ L∞, γ, α > 0.(A.3)

The following Lemma (which is used several times in the present paper) states that the risk measures induced

by the indifference price has a certain subadditive property, with true additivity holding only in exceptional

cases.
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Lemma A.7. For B1, B2 ∈ L∞ and γ1, γ2 > 0, let γ̃ > 0 be given by 1
γ̃ = 1

γ1
+ 1

γ2
. Then,

(a) ν(w) (B1; γ1) + ν(w) (B2; γ2) ≥ ν(w) (B1 +B2; γ̃), and

(b) the following two conditions are equivalent

(1) ν(w) (B1; γ1) + ν(w) (B2; γ2) = ν(w) (B1 +B2; γ̃),

(2) γ1
γ̃ B1 ∼ γ2

γ̃ B2.

Proof.

(a) Using the dual representation (A.1), the inequality in (a) above is equivalent to the following in-

equality

(A.4) sup
Q∈Ma

(
EQ[B1] − 1

γ1
h(Q)

)
+ sup

Q∈Ma

(
EQ[B2] − 1

γ1
h(Q)

)
≥ sup

Q∈Ma

(
EQ[B1 + B2] − 1

γ̃
h(Q)

)
,

which always holds for elementary reasons.

(b) (1) ⇒ (2). If the equality in (1) above holds, then it also holds in (A.4). By strict convexity of the

function h(·) in this effective domain, i.e. onMe,f , and the scaling property (A.3), this is equivalent

to equality of dual minimizers

Q(
γ1
γ̃ B1) = Q(

γ2
γ̃ B2) = Q(B1+B2).

By the representation (A.2) of the Radon-Nikodym derivatives of the above measures, we get

k1e
(ϑ

(
γ1
γ̃
B1)·S)T e

γ1
γ̃ B1 =

dQ(
γ1
γ̃ B1)

dP γ1
γ̃ B1

dP γ1
γ̃
B1

dP
=
dQ(

γ1
γ̃ B1)

dP
=

=
dQ(

γ2
γ̃ B2)

dP
=
dQ(

γ2
γ̃ B2)

dP γ2
γ̃ B2

dP γ2
γ̃

dP
= k2e

(ϑ
(
γ2
γ̃
B2)·S)T e

γ2
γ̃ B2 ,

and so γ1
γ̃ B1 − γ2

γ̃ B2 = (ϑ · S)T + k, where k = log(k2)− log(k1) and ϑ = ϑ(
γ2
γ̃ B2) − ϑ(

γ1
γ̃ B1).

(2) ⇒ (1). Conversely, suppose that γ1
γ̃ B1 − γ2

γ̃ B2 = (ϑ · S)T + k, for some k ∈ R and ϑ ∈ Θ.

Using the scaling property (A.3), the equality in (1) is equivalent to

1
γ1
ν(w)

(
γ1

γ̄
B1; γ̄

)
+

1
γ2
ν(w)

(
γ2

γ̄
B2; γ̄

)
=

1
γ̄
ν(w) (B1 +B2; γ̄)(A.5)

By the risk equivalence between γ1
γ̃ B1 and γ2

γ̃ B2 and the replication invariance of ν(w) (·; γ̄), we have

1
γ1
ν(w)

(
γ1

γ̄
B1; γ̄

)
+

1
γ2
ν(w)

(
γ2

γ̄
B2; γ̄

)
=

1
γ1
ν(w)

(
γ1

γ̄
B1; γ̄

)
+

1
γ2
ν(w)

(
γ1

γ̄
B1 + k + (ϑ · S)T ; γ̄

)
=

1
γ̄
ν(w)

(
γ1

γ̄
B1; γ̄

)
+

k

γ2
.

(A.6)

On the other hand,

1
γ̄
ν(w) (B1 +B2; γ̄) =

1
γ̄
ν(w)

(
B1 +

γ1

γ2
B1 +

γ̄

γ2
(k + (ϑ · S)T ); γ̄

)
=

1
γ̄
ν(w)

(
γ1

γ̄
B1; γ̄

)
+

k

γ2
.(A.7)

The equality in (A.5) now follows directly from (A.6) and (A.7). �
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The conjugacy between (affine transformations of) ν(w)(·; γ|E) and h(·), as displayed in Theorem A.3 and

Proposition A.6, yields directly the following auxiliary result:

Lemma A.8. For E , Ẽ ∈ L∞, γ > 0, the following two statements are equivalent

(1) ν(w)(B; γ|E) ≥ ν(w)(B; γ|Ẽ), for all B ∈ L∞,

(2) h−γE(Q) ≤ h−γẼ(Q), for all Q ∈Ma.

We use Lemma A.8 in the proof of the following proposition:

Proposition A.9. For E ∈ L∞ and γ > 0, the following statements are equivalent:

(1) ν(w) (B; γ) ≥ ν(w)(B; γ|E), for all B ∈ L∞,

(2) ν(w) (B; γ) = ν(w)(B; γ|E), for all B ∈ L∞,

(3) E ∈ R∞, and

(4) Q(0) = Q(−γE).

Proof. (4) ⇒ (3) Just like in the proof of implication (1) ⇒ (2) in Lemma A.7, we can use the equation

(A.2) in Theorem A.3 to show that (4) implies (3).

(3)⇒ (2) Follows immediately from statement (3) in Proposition A.1.

(2)⇒ (1) Clearly, (1) is weaker than (2).

(1)⇒ (4) By Lemma A.8, the equality in (2) implies that h−γE(Q) ≥ h(Q), for all Q ∈Ma, i.e.

H(Q|P−γE)−H(Q(−γE)|P−γE ) ≥ H(Q|P)−H(Q(0)|P), ∀Q ∈Ma.

In particular, for Q = Q(−γE), we get

H(Q(−γE)|P) ≤ H(Q(0)|P).

Therefore, Q(−γE) = Q(0), by the strict convexity of the relative entropy H(·|P) on its effective domain. �

Considered as convex risk measure, the indifference price is not homogeneous. In fact, the homogeneity

holds only for replicable claims as the following proposition states.

Proposition A.10. For B, E ∈ L∞ and γ > 0, the following statements are equivalent:

(1) ν(w)(αB; γ|E) = αν(w)(B; γ|E), for some α ∈ R \ {0, 1},
(2) B ∈ R∞.

Proof. We assume, for simplicity, that E = 0 (otherwise, we simply change the underlying probability to

P−γE).

(2)⇒ (1) If B ∈ R∞, then αB ∈ R∞, so (1) follows from the replication-invariance of ν(w) (·; γ).

(1)⇒ (2) Suppose, first, that (1) holds with α > 0. Then

sup
Q∈Ma

(
EQ[B]− 1

γ
h(Q)

)
= sup

Q∈Ma

(
EQ[B]− 1

αγ
h(Q)

)
.
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The two maximized functions are strictly concave, ordered and agree only for Q such that h(Q) = 0.

Therefore, the equality of their (attained) suprema forces the relation h(Q(γB)) = h(Q(αγB)) = 0, which,

in turn, implies that Q(γB) = Q(αγB) = Q(0). We can conclude that B ∈ R∞ by using the implication

(4)⇒ (3) in Proposition A.9.

It remains to treat the case α < 0. By considering the random variable |α|B instead of B, it is clear that

we can safely assume that α = −1, i.e., ν(w) (−B; γ) = −ν(w) (B; γ). Equivalently, we have

inf
Q∈Ma

(
EQ[B] +

1
γ
h(Q)

)
= sup

Q∈Ma

(
EQ[B]− 1

γ
h(Q)

)
,

which, by positivity of h(·), implies that h(Q(γB)) = 0. We continue as above to conclude that B ∈ R∞. �

A.4. Relationship between conditional and unconditional indifference prices. It has been observed

(see Remark 1.3.2 in Becherer (2001)) that the conditional indifference price can be written as difference of

two unconditional ones:

(A.8) ν(w)(B; γ|E) = ν(w) (B − E ; γ)− ν(w) (−E ; γ) = ν(w) (B − E ; γ) + ν(b) (E ; γ) .

A similar relationship, namely ν(b) (B; γ) = ν(b) (B + E ; γ)−ν(b) (E ; γ) = ν(b) (B + E ; γ)+ν(w) (−E ; γ), holds

for the buyer’s conditional indifference prices.

A.5. ν(w)(B; γ|E) as a function of γ. It is a known property of the unconditional indifference price that

the mappings γ 7→ ν(w) (B; γ) and γ 7→ −ν(b) (B; γ) are non-decreasing. In fact, we have the following, more

precise, statement

Proposition A.11. For γ > 0 and B ∈ L∞, the mapping γ 7→ ν(w) (B; γ) (γ 7→ ν(b) (B; γ)) is

(1) constant and equal to the value EQ[B], constant over Q ∈Ma, when B ∈ R∞, and

(2) strictly increasing (decreasing), otherwise.

Proof. We only deal with the writer’s price ν(w) (B; γ). The case of the buyer’s price is parallel.

(1) By the replication invariance of the ν(w) (·; γ), the value of ν(w) (B; γ) equals to the value EQ[B],

Q ∈Ma, when B ∈ R∞.

(2) Suppose now that ν(w) (B; γ1) ≤ ν(w) (B; γ2), for some 0 < γ1 < γ2. By the dual representation

(A.1), we have ν(w) (B; γ1) = ν(w) (B; γ2), and using the scaling property (A.3), we get

αν(w) (B; γ2) = ν(w) (αB; γ2) ,

where α = γ2/γ1 > 1. By Proposition A.10, B ∈ R∞.

�

A similar proposition in the conditional case fails. Indeed, here is a simple example. Pick E 6∈ R∞, and

set B = E , Then ν(w)(E ; γ|E) = ν(b) (E ; γ) - a strictly decreasing function of γ. An even more instructive

example in which the dependence of γ ceases to be monotone at all is given below.
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Example A.12. We adopt the setting of Example 4.5, and assume that the coefficients b and a are chosen

in such a way that the distribution of the random variable YT is diffuse (under P, and, therefore, under every

equivalent martingale measure). Let Q(0) be the minimal-entropy martingale measure and let gi : R→ R, i =

1, 2 be two bounded Borel-measurable functions. We set E = −g1(YT ) and B = g2(YT )−g1(YT ), and compute

the conditional indifference price ν(w)(B; γ|E) as a difference ν(w)(B; γ|E) = ν(w) (B − E ; γ) − ν(w) (−E ; γ).

By the expression (A.8) and the formula (4.5), we have

ν(w)(B; γ|E) = ν(w) (g2(YT ); γ)− ν(w) (g1(YT ); γ)

=
1

γ(1− ρ2)

(
lnEQ(0)

[exp(γ(1− ρ2)g1(YT ))]− lnEQ(0)
[exp(γ(1− ρ2)g2(YT ))]

)
.

(A.9)

The intervals of monotonicity of the mapping γ 7→ ν(w)(B; γ|E) therefore coincide with the intervals of

monotonicity of the function f : (0,∞)→ R given by

f(γ) =
1
γ

(
lnEQ(0)

[Xγ
1 ]− lnEQ(0)

[Xγ
2 ]
)
,

where the bounded and positive random variables Xi, are given by Xi = exp((1 − ρ2)gi(YT )), i = 1, 2. It

is clear that, thanks to the assumption of diffusivity of the random variable YT , any pair of probability

distributions with compact support in (0,∞) can be chosen for X1 and X2 by the appropriate choice of the

functions g1 and g2.

Thanks to the boundedness of X1 and X2, we can easily obtain the following asymptotic expansion for

the function f around γ = 0:

f(γ) = EQ(0)
[X1]− EQ(0)

[X2] + 1
2γ(VarQ(0) [X1]−VarQ(0) [X2]) + o(γ).

In a similar manner, we have

lim
γ→∞

f(γ) = ln ||X1||L∞ − ln ||X2||L∞ .

Therefore, if X1 and X2 satisfy

(1) EQ(0)
[X1] < EQ(0)

[X2], and

(2) VarQ(0) [X1] < VarQ(0) [X2],

the function f is strictly decreasing and negative in a neighborhood of γ = 0. If, in addition

(3) ||X1||L∞ > ||X2||L∞ ,

holds, this trend cannot continue for all γ since f(+∞) = ln (||X1||L∞/||X2||L∞) > 0 > E[X1] − E[X2] =

f(0+). The straightforward construction of examples of the random variables X1 and X2 having the above

properties is left to the reader.
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A.6. Asymptotics of the conditional indifference prices. The asymptotics of the unconditional indif-

ference prices in the risk-aversion parameter γ are well-known (see, for instance, Corollary 5.1 in Delbaen

et al. (2002) or Proposition 1.3.4 in Becherer (2001)):

lim
γ→0

ν(w) (B; γ) = EQ(0)
[B], lim

γ→+∞
ν(w) (B; γ) = sup

Q∈Me,f

EQ[B],

lim
γ→0

ν(b) (B; γ) = EQ(0)
[B], lim

γ→+∞
ν(b) (B; γ) = inf

Q∈Me,f

EQ[B].
(A.10)

Using the decomposition (A.8), these are easily extended to the conditional case:

Proposition A.13. For B, E ∈ L∞, we have

lim
γ→0

ν(w)(B; γ|E) = EQ(0)
[B], lim

γ→+∞
ν(w)(B; γ|E) = sup

Q∈Me,f

EQ[B − E ] + inf
Q∈Me,f

EQ[E ], and

lim
γ→0

ν(b)(B; γ|E) = EQ(0)
[B], lim

γ→+∞
ν(b)(B; γ|E) = inf

Q∈Me,f

EQ[B − E ] + sup
Q∈Me,f

EQ[E ].
(A.11)

One can, further, establish the continuous differentiability of the map γ 7→ ν(w)(B; γ|E), for γ ∈ (0,∞),

by noting the fact that

ν(w)(B; γ|E) =
1
γ

(
ν(w) (γ(B − E); 1)− ν(w) (−γE ; 1)

)
(A.12)

and using it together with the result of Theorem 5.3 in Ilhan et al. (2005) which states that the function

γ 7→ ν(w) (γC; 1) is continuously differentiable on (0,∞) for C ∈ L∞.

For n ∈ N, let (L∞)n denote the set of all n-tuples B = (B1, . . . , Bn) of elements of L∞, with ||B||(L∞)n =

maxk≤n ||Bk||L∞ . For α = (α1, α2, . . . , αn) ∈ Rn, we write α · B =
∑n
k=1 αkBk ∈ L∞ and set |α| =

maxk≤n |αk|.

Proposition A.14. For E ∈ L∞ and B ∈ (L∞)n, the function w : Rn × (0,∞]→ R given by

w(α, γ) =

ν
(w)(α ·B; γ|E), γ <∞

supQ∈Me,f
EQ[α ·B − E ] + infQ∈Me,f

EQ[E ], γ = +∞,
(A.13)

is jointly continuous, and Lipschitz continuous on every subset D of its domain of the form D = [γ0,∞)×Rn,

γ0 > 0.

Proof. The functional B 7→ ν(w)(B; γ|E) is positive and coincides with identity on constants, so for γ ∈
(0,∞), ∣∣∣ν(w)(α1 ·B; γ|E)− ν(w)(α2 ·B; γ|E)

∣∣∣ ≤ ||(α1 −α2) ·B||L∞ ≤ |α1 −α2| ||B||(L∞)n .(A.14)
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For γ = +∞, the validity of (A.14) follows by passing to the limit γ → ∞. On the other hand, by (A.12),

for B ∈ L∞, γ0 > 0 and γ1, γ2 ∈ [γ0,∞), we have∣∣∣ν(w)(B; γ1|E)− ν(w)(B; γ2|E)
∣∣∣ ≤ 1

γ0

(∣∣∣ν(w) (γ1(B − E); 1)− ν(w) (γ2(B − E); 1)
∣∣∣

+
∣∣∣ν(w) (−γ1E ; 1)− ν(w) (−γ2E ; 1)

∣∣∣)
≤ 1
γ0

(||B − E||L∞ + ||E||L∞) |γ1 − γ2| .

(A.15)

Therefore, for each γ0 > 0, there exists a constant C = C(γ0) > 0 such that

|w(α1, γ1)− w(α2, γ2)| ≤ C (|γ1 − γ2|+ |α1 −α2|) , for γ1, γ2 ∈ [γ0,∞), α1,α2 ∈ Rn.

The existence of the limit w(α,∞) = limγ→∞ w(α, γ) is the final ingredient in the proof. �

Appendix B. The residual risk process

In this Section, we deal with the the notion of the residual risk in the dynamics setting, i.e., the residual-

risk process. We first recall the definition of dynamic version of the (conditional) indifference price.

B.1. A dynamic version of the indifference price. In addition to the study of the indifference prices

ν(w)(B; γ|E) and ν(b)(B; γ|E) defined at time t = 0, one can restrict attention to any subinterval [t, T ] of [0, T ],

and consider the filtered probability space (Ω,F , {Fu}u∈[t,T ] ,P) and the stock-price process {Su}u∈[t,T ].

The (conditional) indifference price of the contingent claim B, defined on this restricted model, is denoted

by ν
(w)
t (B; γ|E). More precisely (see Mania and Schweizer (2005), Proposition 12, page 2127 for details),

ν
(w)
t (B; γ|E) can be defined to be the a.s.-unique solution of the following equation

(B.1) esssup
ϑ∈Θ

E
[
− exp

(
− γ
(
E +

∫ T

t

ϑu dSu + ν
(w)
t (B; γ|E)−B

))∣∣∣Ft]
= esssup

ϑ∈Θ
E
[
− exp

(
− γ
(
E +

∫ T

t

ϑu dSu
))∣∣∣Ft].

One can show using standard dynamic-programming methods (see e.g. Mania and Schweizer (2005))

that, when seen as a stochastic process, (ν(w)
t (B; γ|E))t∈[0,T ] admits a cádlág modification. The process

(ν(w)
t (B; γ|E))t∈[0,T ], modified so as to become cádlág, is called the writer’s indifference price process for the

claim B. A natural analogue corresponding to the buyer’s price can be introduced in a similar fashion.

B.2. The residual risk process. Having defined the dynamic version (ν(b)
t (B; γ|E))t∈[0,T ] of the indifference

price process, one can render the notion of the residual risk introduced in Section 3, dynamic, too. More

precisely, the writer’s residual risk process (R(w)
t (B; γ|E))t∈[0,T ] is defined by

R
(w)
t (B; γ|E) = ν

(w)
t (B; γ|E)− ν(w)(B; γ|E)−

∫ t

0

ϑ(B|E)
u dSu.
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(note that R(w)
T (B; γ|E) = R(w)(B; γ|E)). We can define the buyer’s residual risk process by R(b)

t (B; γ|E) =

R
(w)
t (−B; γ|E). It is straightforward that

R
(w)
t (B; γ|E) = R

(w)
t (B − E ; γ|E)−R(w)

t (−E ; γ|E), t ∈ [0, T ].(B.2)

and that the process (R(w)
t (B; γ|E))t∈[0,T ] admits a cádlág modification. It has been shown in Mania and

Schweizer (2005) (see Theorem 13) that when F is continuous, the residual risk process admits a represen-

tation in terms of a martingale orthogonal to S. We state the straightforward extension of this result to the

conditional case below.

Theorem B.1 (Mania M. and Schweizer M. (2005)). Suppose that the filtration F is continuous, and let the

process (R(w)
t (B; γ|E))t∈[0,T ] be as above. Then there exists a process (L(w)

t (B; γ|E))t∈[0,T ] such that

(1) (L(w)
t (B; γ|E))t∈[0,T ] is a Q(−γE)-martingale in the space BMO(Q(−γE)), and

(2) R
(w)
t (B; γ|E) = L

(w)
t (B; γ|E)− γ

2 〈L
(w)(B; γ|E)〉t.

When E ∼ 0, the family {L(w)(B; γ)}γ>0 admits a limit L(w)(B; 0), as γ ↘ 0, in BMO(Q(0)). The process

L(w)(B; 0) can be identified as a term in the Kunita-Watanabe decomposition

Bt = EQ(0) [B] +
∫ t

0

ϑ̂
(B)

u dSu + L
(w)
t (B; 0), t ∈ [0, T ],(B.3)

of the Q(0)-martingale Bt = EQ(0)
[B|Ft], where ϑ̂

(B)
is an S-integrable predictable process for which (ϑ̂

(B)
·

S) a Q(0)-square integrable martingale. In particular, L(w)(B; 0) is strongly orthogonal to any Q(0)-local

martingale of the form (ϑ · S), ϑ ∈ L(S).
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Cvitanić, J., W. Schachermayer, and H. Wang. Utility maximization in incomplete markets with random

endowment. Finance and Stochastics, 5:237–259, 2001.

Dana, R.-A., and C. Le Van. Arbitrage, duality and asset equilibria. Journal of Mathematical Economics,

34(3):397–413, 2000.

Dana, R.-A., and M. Scarsini. Optimal risk sharing with backround risk. Journal of Economic Theory, 133

(1):152–176, 2007.

Davis, M.. Option pricing in incomplete markets. In Mathematics of derivative securities (Cambridge, 1995),

volume 15 of Publ. Newton Inst., pages 216–226. Cambridge Univ. Press, Cambridge, 1997.

Delbaen, F., P. Grandits, T. Rheinländer, D. Samperi, M. Schweizer, and C. Stricker. Exponential hedging

and entropic penalties. Mathematical Finance, 12(2):99–123, 2002.

Delbaen, F., and W. Schachermayer. The no-arbitrage property under a change of numéraire. Stochastics,
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