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Abstract. We consider a market model that consists of financial investors and produc-
ers of a commodity. Producers optionally store some production for future sale and
go short on forward contracts to hedge the uncertainty of the future commodity price.
Financial investors take positions in these contracts to diversify their portfolios. The spot
and forward equilibrium commodity prices are endogenously derived as the outcome
of the interaction between producers and investors. Assuming that both are utility max-
imizers, we first prove the existence of an equilibrium in an abstract setting. Then, in a
framework where the consumers’ demand and the exogenously priced financial market
are correlated, we provide semi-explicit expressions for the equilibrium prices and ana-
lyze their dependence on the model parameters. The model can explain why increased
investors’ participation in forward commodity markets and higher correlation between
the commodity and the stock market could result in higher spot prices and lower for-
ward premia.
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1. Introduction
Since the early 2000s, the futures and forward contracts written on commodities have been a widely popular
investment asset class for many financial institutions. As indicatively reported in Commodity Futures Trading
Commission [17], the value of index-related futures’ holdings in commodities grew from $15 billion in 2003
to more than $200 billion in 2008.1 This significant inflow of funds has coincided, up to 2008, with a steep
increase in the spot and futures prices of the majority of commodities, especially those included in popular
commodity indices. The co-movement of amounts invested in commodity-linked securities and the prices of
the associated commodities continued even during the prices’ bust in 2008 and their recovery, which started
in 2009; see e.g., the empirical studies in Singleton [56], Tang and Xiong [60] and Buyuksahin and Robe [10].2
Furthermore, several statistical studies have found that the correlation between commodity prices and the stock
market has grown during the last years. For example, Buyuksahin and Robe [10] argue that the correlation of
the U.S. stock market (weekly) returns and the returns of the Goldman Sachs Commodity Index (GSCI) varies
from −38% to 40% depending on the period, and stays positive and away from zero after 2009; further statistical
evidence on the increased correlation are given in Tang and Xiong [60], Singleton [56] and in Singleton and
Thorp [57]. Therefore, the investment strategies of financial institutions on stock and commodity markets should
be considered in the same optimization problem and not independently.

The booms and busts of the prices of major commodities during the last decade has naturally captured the
interest of the academic community. The main question addressed is whether the behavior of commodities’
prices is caused by the positions of speculators (enhanced by the financialization) or by the fluctuations of
fundamental economic factors (i.e., increased demand and weakened supply).3 Even though there exist several
empirical studies, the theoretical approaches that link spot and forward prices of commodities with the rest of
the investment assets are scarce.
This paper develops an equilibrium model that allows us to endogenously derive the spot and the forward

price of a commodity. Our model is flexible and general enough to include not only the randomness of the
commodity demand and the commodity holders’ storage option but also risk averse agents and correlation
between the stock and the commodity market. In our model, equilibrium commodity prices are formed as the
outcome of the interaction between market participants, and simultaneously clear out the spot and the forward
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market. The forces that lead to the market equilibrium are the producers’ goal to maximize their spot revenues
and optimally hedge the risk of the future commodity price, and the investors’ goal to achieve an optimal
portfolio strategy which, besides the stock market, includes a position in the commodity’s forward contracts.
The model offers new insights on how specific model inputs, such as the agents’ risk aversion, the correlation of
the stock and commodity markets, and the uncertainty of the future commodity price, influence the equilibrium
prices and the related risk premia.

1.1. Model Description
We consider a model of two points in time: the initial point and a given (short-term) future horizon T. We
assume that the main market participants are the representative agents of the commodity’s holders/suppliers
and the financial investors/speculators, hereafter called producers4 and investors5 respectively.
The producers’ source of income are the revenues from spot and future sales. While the commodity spot

price could be determined by the spot commodity demand function, the future price is subject to demand
shocks. Assuming that producers are risk averse, their goal is not only to maximize their spot revenues but
also to reduce their risk exposure to the future commodity price by maximizing their expected utility.6 If the
production schedule at the initial and future time is a predetermined pair of units, producers have two decisions
to make, i.e., the amount of production to supply in the spot market (inventory management) and the position
to take in the forward contract (hedging strategy). Provided they know the demand function of the commodity’s
consumers at the initial time, they can determine the commodity spot price by choosing the amount of the
inventory they will hold up to the terminal time. However, random demand shocks at time T will shift the
whole demand function to lower or higher levels (for instance, in Section 4 we suppose that the random shift
of the demand function is driven by a vector of stochastic market factors). Producers hedge the risk that stems
from the future time demand function by taking a short position in forward contracts written on the same
commodity and with maturity equal to T. The fact that the inventory will also be sold at time T makes the
forward hedging position even more important for the producers.7
The producers’ hedging demand is covered by financial investors who take the opposite position in the for-

ward commodity contracts and thus share some of the future price uncertainty risk, possibly against a premium.
They invest optimally in an exogenously priced stock market8 and are willing to take the future commodity
price risk to better diversify their portfolio. Indeed, as mentioned above, the correlation between commodity
and stock market indices has been shown to be away from zero. This correlation could be incorporated in a
model where the stock market price is driven by the same stochastic factors that drive the evolution of the
commodity demand function. Given this correlation, the optimal investment strategy in the stock and the com-
modity market should be considered in the same optimization problem. As in the producers’ side, we assume
that the investors are represented by an agent who is a utility maximizer and whose investment choices are the
(possibly dynamic) trading strategy in the stock market and the position in the forward commodity contract.
The optimization choices of producers and investors clearly depend on the forward commodity price. We

define as equilibrium forward price the price that clears the forward market and at which both participants’
expected utilities are maximized. Given the forward price, the producers optimally choose the inventory policy,
which in turn gives the initial commodity supply and thus determines the spot price through the initial demand
function of the consumers. Therefore, by deriving the equilibrium forward commodity price, the equilibrium
spot price as well as the producers’ optimal inventory policy are also endogenously derived in our model.

1.2. Findings and Contributions
The main mathematical result of this work is to prove, under constant absolute risk averse (CARA) preferences
and under some minor technical assumptions, that equilibrium spot and forward commodity prices exist. In
this proof, we use standard duality arguments to show that producers’ and investors’ optimization problems
are well defined and admit finite solutions. The existence of the forward commodity equilibrium price is first
proved for every fixed producers’ storage choice. Then, we show that this equilibrium is stable with respect to
the storage choice, which in turn guarantees the existence of the commodity market equilibrium. In fact, this
stability result is interesting in its own right since it shows that the market clearing is stable with respect to any
control variable that belongs to a closed set of real numbers.
The constructive nature of the aforementioned proof allows us to derive implicit formulas for spot and forward

prices, which can be used to investigate how the main model parameters influence the commodity market. We
illustrate this using two examples with factors driven by Lévy processes, i.e., first a Brownian motion and then
a jump-diffusion process. The main results are given below.

Focusing first on the equilibrium spot price, our results imply that it is monotonic with respect to the agents’
risk aversion coefficient; it is increasing for producers and decreasing for investors (see Figures 1 and 2). When
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producers are more concerned about the commodity future price uncertainty, they increase their position in
the forward contract and hence lock the selling price at the terminal time. As long as the hedging position is
counterpartied by the investors, high risk averse producers can increase their certain revenues today and at the
same time hedge their future price risk. What is critical in this monotonicity is the correlation between the stock
market and the demand random shocks. As illustrated in Section 5, when correlation is away from zero, the
equilibrium spot price is pushed upwards. This is mainly because higher correlation means that investors can
better hedge their risk exposure in the commodity market by adjusting their investments in the stock market.
Hence, they are willing to receive a lower forward premium, thus making hedging cheaper for the producers.
In particular, when the investors are more risk averse, they reduce their share in the future commodity price
risk; thus, producers cannot hedge their future price risk, which forces them to increase their supply in the
spot market. Therefore, the spot price is a decreasing function of investors’ risk aversion (all else equal). Also,
it follows that the producers’ ability to hedge their risk tends to increase the spot equilibrium prices. Moreover,
our model shows that a forward contract in the commodity market stabilizes spot prices when there is scarcity
of the commodity at the terminal time; in particular, the presence of forward contracts increases the current
spot and decreases the expected future spot price of the commodity.
The monotonicity of the spot price with respect to risk aversions could also be used to explain how the

participation of investors in the commodity forward markets could result in an increase of spot commodity
prices. Indeed, under CARA preferences the more investors participate in the market, the higher the aggregate
risk tolerance becomes or, equivalently, the lower the representative risk aversion’ coefficient becomes (see,
among others, Wilson [61]). As discussed above, this implies higher spot commodity price, a result that is
consistent with the observed market data (see e.g., Buyuksahin and Robe [10] and Henderson et al. [33]).
Similarly, we verify that more producers (of the same total production) implies lower spot price.

In addition to equilibrium commodity spot prices, our model allows us to endogenously derive quantities
that characterize the two major, and not mutually exclusive, theories of forward commodity markets, i.e., the
theory of storage and the theory of normal backwardation. Based on the ideas introduced in Kaldor [40], Working [62]
and Brennan [9], the theory of storage states that the holders of the commodity inventories obtain an implicit
benefit, called convenience yield, which implies the value of the spot commodity consumption. This yield can
be approximated by the difference between the spot and the forward price minus the cost of storage. Our
equilibrium model verifies that the convenience yield is increasing with respect to the producers’ risk aversion,
meaning that the more sensitive to the risk the producers are, the more commodity forward units they hedge
depressing the forward price (see Figure 6 for the Brownian motion example). A similar increasing relation
holds for the investors (these relations, in particular, generalize the results of Proposition 1 in Acharya et al. [1]).
However, the convenience yield is not always monotonic with respect to the correlation coefficient. As discussed
in Section 4, there are two effects of opposing direction on the convenience yield, one from the decrease of the
effective investors’ risk aversion and other from the corresponding increase on the spot price. The total effect
mainly depends on the level of the agents’ risk aversions and the (uneven) production levels at initial and
terminal time (see Figures 6 and 7).
On the other hand, the theory of normal backwardation (see the seminal works by Keynes [43] and Hicks [34]),

states that there is a positive premium required by the investors to satisfy the producers’ hedging demand
in forward contracts. This premium, usually called forward or insurance premium, is given as the percentage
difference between the expected commodity price at maturity and its forward price. As expected, this premium
is increasing (decreasing) with respect to investors’ (producers’) risk aversion.
By contrast to the existing literature, our model includes as an input the correlation between the stock market

and the commodity demand shock. Several empirical studies have shown that this correlation is indeed non-
zero and, as our results demonstrate, it does heavily influence the equilibrium prices. In particular, as shown in
Section 5, the effective investors’ risk aversion coefficient is decreasing in the presence of non-zero correlation.
This simply reflects the fact that higher correlation means better hedging of the forward contract position by
trading in the stock market (provided there are no short-selling constraints on the investors’ trading strategies).
Hence, non-zero correlation has in principle the same effect on the equilibrium as a decrease in the investors’
risk aversion (see Figures 1, 2 and 5). For instance, higher correlation (in absolute values) means higher spot
commodity price, a result that is also consistent with the observed market data (see e.g., Tang and Xiong [60]).
A similar effect is caused by an increased variance of the demand shock, which can be due to the presence of
jumps (see Figure 5).

1.3. Relation with the Existing Literature
Equilibrium pricing models in markets that consist of utility maximizing agents have recently been addressed
by a number of authors in mathematical finance; see, among others, Anthropelos and Žitković [4], Barrieu and
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El Karoui [7], Cheridito et al. [15], Filipović and Kupper [25], Horst and Müller [37] and Karatzas et al. [42].
The results in this literature however do not cover the case of commodity forward contracts, not only because
a commodity has a consumption value that is reflected by the consumers’ demand function but also due to
the producers’ specific storage choice. To our knowledge, this paper is the first to apply a utility maximization
criterion for spot and forward equilibrium prices of commodities, while also considering the existence of a
correlated stock market.
Theoretical studies of the equilibrium relationship between spot and forward commodity prices go back to

Stoll [58], Anderson and Danthine [3] and Hirshleifer [35, 36]. However, the results of these seminal works are
limited with regard to the agents’ risk preferences, which are assumed to be mean-variance; recent extensions
of this setting have followed approaches that are different from ours. For instance, in Baker [6], mean-variance
optimization problems are imposed in a discrete time dynamic model, where investors are those who have the
storage option and the consumers (the households) get utility from consumption and the wealth (numéraire
units). In Routledge et al. [51] and Pirrong [49], investors are assumed to be risk neutral and without access
to other financial markets, while forward prices are simply the expectations of future spot prices. Interaction
between optimal storage and the investors’ optimal position in the forward contract and its effect to spot and
forward equilibrium prices are also studied in Ekeland et al. [24]. However, by contrast to our model, the
investors trade only in forward contracts, while the preferences are mean-variance, which means they are not
monotonic with respect to futures revenues. More recently, endogenous commodity supply under asymmetric
information and limited participation has been developed in Leclercq and Praz [48]. Static mean-variance models
have been also studied and statistically tested in Acharya et al. [1] and Gorton et al. [30]. However, neither
the investors nor the producers trade in any other market outside of the commodity market.9 Hence, their
theoretical results cover only a very special case of our model, i.e.„ when the stock and the commodity markets
are uncorrelated and the demand random shift is normally distributed.10
The main novelties of our approach compared to the related literature are consideration of an exogenous

stock market available in the investors’ trading set, the risk aversion of the agents’ preferences, and the much
richer family of processes that model the market factors.11 Indeed, as has already been discussed, the correlation
between the stock and commodity markets and the jump component do influence the equilibrium prices.
This paper is structured as follows: Section 2 sets up the general framework for our equilibrium model. The

well posedness of the agents’ optimization problems and the existence of an equilibrium are proved in Section 3.
Section 4 studies a model with continuous trading under Lévy dynamics, where semi-explicit formulas for
equilibrium quantities are derived and discussed. Finally, Section 5 focuses on two examples that permit the
illustration and a further economic interpretation of the results. Technical proofs of Section 5 are provided in
Appendix A.

2. A General Framework for Commodity Prices
We begin by describing a general modeling framework where the interaction of market participants determines
the spot and forward prices of commodities. The model consists of a pair of representative agents:12 the producers
produce the commodity, supply part of the production at the spot market, and store the rest, while they
hedge their exposure to price fluctuations using forward contracts on the commodity. The investors invest in
financial markets and, to diversify their portfolio, also invest in the commodities forward market. Moreover,
the model includes consumers who use the commodity at the spot market. Our goal is to determine the price
of the commodity that makes the forward market clear out, assuming that producers and investors are utility
maximizers.
More specifically, the producers produce π0 units of the commodity at the initial time 0 and πT units at the

terminal time T; π0 and πT are assumed to be deterministic.13 They offer π0 − α units at the spot market at
time 0 and store the rest for time T. Furthermore, they hedge their exposure by investing in the forward market.
Therefore, their position at time T is

¯
w(α, hp)� P0(π0 − α)(1+R)+PT(πT + α(1− ε))+ hp(PT − F), (1)

where P0 and PT denote the spot price at times 0 and T, respectively, R the discretely compounded interest
rate, ε ∈ [0, 1] the cost of storage considered as percentage of the stored units,14 F the forward price, and hp

the amount of forward contracts held by the producers. A positive hp indicates a long position in the forward
contract, while a negative hp amounts to a short position. The producers’ utility is assumed to be exponential;
henceforth their preferences are described by

�p(v)�−
1
γp

logƐ[e−γp v], (2)
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where γp > 0. As in Anderson and Danthine [2, 3], their problem is to find an optimal storage strategy α ∈ [0, π0]
and an optimal hedging strategy hp ∈ � to maximize the utility of their position (1). Therefore, their utility
maximization problem is

Πp :� sup
α∈[0, π0], hp∈�

�p( ¯w(α, h
p)). (3)

The spot price of the commodity is the price at which the consumers’ demand equals the producers’ supply.
The consumers’ demand at the initial time is given by a strictly decreasing and linear function15

ψ0(x)� µ−mx , (4)

where µ ∈� and m ∈�+, while x denotes the price. The parameter m is a measure of the elasticity of demand for
the commodity. The demand at the terminal time is random and depends on the factors driving the commodities
market, which are incorporated in a random variable X. The demand function at the terminal time is of the form

ψT(x)� ψ0(x)+X. (5)

In other words, we assume that the shape and the elasticity of the demand function remain the same, however
there is a random shift16 acting on it. This shift may be, for example, the result of an increase or decrease in the
prices of the competitive commodities, fluctuations in a dominated currency or an exogenous increase in the
demand for every price level. Because the demand function is linear, the inverse demand function is also linear
and equals

φ0(y)�
µ− y

m
and φT(y)�

µ+X − y
m

. (6)

Henceforth, if the producers store α units at the initial time, the spot price of the commodity, determined by
the equilibrium condition between demand and supply, equals

P0 � φ0(π0 − α)� φ0(π0)+
α
m
, (7)

while the commodity spot price at the terminal time is

PT � φT(πT + α(1− ε))� φ0(πT) −
α(1− ε)

m
+

X
m
. (8)

The producers control the spot price by choosing the inventory policy. By storing more commodity units they
increase the spot price, but they also increase their exposure to the variation of the future spot price since the
stored units will be supplied at the next time period.
The investors take a position hs in the forward contract and invest in an exogenously17 priced financial market.

Their position at time T equals

w̄(G, hs)� hs(PT − F)+G, (9)

for G ∈ G, where G is a set of random variables that models discounted trading outcomes attainable with zero
initial wealth. This general formulation allows to simultaneously consider different scenarios.

Example 2.1. The simplest scenario is G � {0}, wherein the investors can only invest in the forward contract.
Another scenario is to consider an asset price process S and denote by G(θ)�

∫ ·
0 θu dSu the gains process for a

trading strategy θ. In that case, the set of trading outcomes G is given by

G � {GT(θ): θ ∈Θ},

for a set Θ of admissible, self-financing trading strategies. Transaction costs can be easily incorporated as well
by setting

G � {GT(θ) − k(θ): θ ∈Θ},

where k: Θ→� is a concave function. ♦
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We assume that the investors’ utility is also exponential with γs > 0, that is, their preferences are described by

�s(v)�−
1
γs

logƐ[e−γs v], (10)

therefore their utility maximization problem reads as

Πs :� sup
hs∈�,G∈G

�s(hs(PT − F)+G). (11)

The maximization problem of both participants depends on the forward price F. This price is determined by
the equilibrium in the forward market, which is defined below.

Definition 2.2. A triplet (α̂, ĥ , F̂) is called an equilibrium if it satisfies the following conditions:
• Market clearing: The forward market clears out in the sense that

ĥ :� hp(F̂)�−hs(F̂). (12)

• Optimality: The pair (α̂, ĥ) is optimal for the producers’ problem Πp and ĥ is optimal for the investors’
problem Πs .
The price F̂ � F(α̂) is called the equilibrium commodity forward price at maturity T. The induced price P̂0 :�P0(α̂)

derived by (7) is called the equilibrium commodity spot price at 0.

Remark 2.3. The utility maximization problems of both agents are equivalent to risk minimization problems
relative to the entropic risk measure; see, e.g., Barrieu and El Karoui [7]. The risk measure point of view is
more natural for certain agents, such as a corporation managing its risk exposure. �

3. Equilibrium in the General Framework
This section is designed to show that an equilibrium exists in the general modeling framework described above,
under mild assumptions on the random variable X and the set of trading outcomes G. Let (Ω,F ,� ) be a
probability space where F � F T . In the sequel, all equalities and inequalities between random variables are
understood in the � -almost sure sense. The interior and the boundary of a set K are denoted by K◦ and ∂K,
respectively, and the domain of a function f by dom f .
We denote the set of exponential moments of X by UX � {u ∈ �: Ɛ[euX] <∞} and define the cumulant gen-

erating function of X by

κX(u)� logƐ[euX], u ∈UX . (13)

The following conditions will be used throughout this work:
(Ɛ
) 0 ∈U◦X .
(�ƆƐ) If ∂UX �±∞ then the following limit holds:

lim
z→±∞

κX(z)
|z | �+∞.

The next lemma summarizes some useful properties of the cumulant generating function.

Lemma 3.1. The cumulant generating function κX is convex and lower semicontinuous.

Proof. Convexity follows directly from Hölder’s inequality; for p , q ∈ (0, 1) conjugate, we have that

κX(pu + qv)� logƐ[epuXeqvX] ≤ log{(Ɛ[euX])p(Ɛ[evX])q} � pκX(u)+ qκX(v).

To show lower semicontinuity, consider a sequence un→ u; then eun x is a sequence of positive functions. Apply-
ing Fatou’s lemma, we get

lim inf
un→u

κX(un)� lim inf
un→u

logƐ[eun X] ≥ logƐ
[

lim inf
un→u

eun X
]
� κX(u). �
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3.1. Producers’ Optimization Problem
The first step is to consider the producers’ optimization problem and show that it admits a maximizer under
mild assumptions. The producers’ position, using the spot market equilibrium conditions (7) and (8), can be
written as

¯
w(α, hp)� P0(π0 − α)(1+R)+PT(πT + α(1− ε))+ hp(PT − F)

(7)
�
(8)

(
φ0(π0)+ α/m

)
(π0 − α)(1+R) − hpF + (πT + α(1− ε)+ hp)

(
φ0(πT) − α(1− ε)/m +X/m

)
�: q(α, hp)+ l(α, hp)X, (14)

where q is a quadratic function18 in α and hp of the form

q(α, hp)�−α2 1+R + (1− ε)2
m

+ α
2(1+R)π0 − 2(1− ε)πT − (R + ε)µ

m

− αhp 1− ε
m
− hp

(
F −

µ− πT

m

)
+ πTφ0(πT)+ π0φ0(π0)(1+R), (15)

while l is a bilinear function in α and hp given by

l(α, hp)� α(1− ε)+ hp + πT

m
. (16)

Using the translation invariance of the exponential utility function, the producers’ utility takes the form

�p( ¯w(α, h
p))�− 1

γp
logƐ[exp(−γp{q(α, hp)+ l(α, hp)X})]

� q(α, hp) − 1
γp

logƐ[exp(−γp l(α, hp)X)]� q(α, hp) − 1
γp
κX(−γp l(α, hp)), (17)

assuming that −γp l(α, hp) ∈UX . In the sequel, we work with the extended producers’ utility �̃p( ¯w(α, h
p)), which

is defined as follows:

�̃p( ¯w(α, h
p))�

{
�p( ¯w(α, h

p)), if (α, hp) ∈ ŨX ,

−∞, otherwise,
(18)

where ŨX � {(x1 , x2) ∈ �2: − γp l(x1 , x2) ∈UX}. The producers’ optimization problem (3) can then be written as
follows:

Πp
� sup
α∈[0, π0]

sup
hp∈�

�̃p( ¯w(α, h
p))

� sup
α∈[0, π0]

sup
hp∈�
{up(α, hp) − hpF} � sup

α∈[0, π0]
{−u∗p(α, F)}, (19)

where

up(α, hp)�
{
q(α, 0) − (1/γp)κX(−γp l(α, hp)) − hp l(α,−µ), if (α, hp) ∈ ŨX ,

−∞, otherwise,
(20)

while u∗p(α, ·) denotes the conjugate function of up(α, ·), for every α ∈ [0, π0].
Proposition 3.2. Assume that conditions (Ɛ
) and (�ƆƐ) hold. Then, for every F ∈ � there exists a maximizer (α̂, ĥp)
for the producers’ problem Πp such that (α̂, ĥp) ∈ ŨX .
Proof. The function �̃p( ¯w(α, h

p)) in (17) is upper semicontinuous, strictly concave in α and concave in hp ,
since q is quadratic, l is linear and κX is convex and lower semicontinuous in its arguments; see Lemma 3.1
and (15)–(16). Observe that α takes values in a bounded set. If the set UX is also bounded, then the existence
of a maximizer follows by the concavity and the upper semicontinuity of �p( ¯w(a , h

p)). Otherwise, if UX is
unbounded, using Assumption (�ƆƐ), the linearity of l in α and that α belongs to a bounded set, we get that

lim
hp→±∞

inf
α∈[0, π0]

κX(−γp l(α, hp))
|hp | �+∞. (21)

Therefore, �p( ¯w(α, h
p)) is coercive in hp resulting in the existence of a maximizer. Finally, if (α̂, ĥp) does not

belong to ŨX , then the utility of the producers is not maximized, see (18). �
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Corollary 3.3. Assume that conditions (Ɛ
) and (�ƆƐ) hold. Then, the function up(α, ·) is concave and upper semicon-
tinuous for every α ∈ [0, π0]. In addition, it is uniformly coercive in α, that is

lim
hp→±∞

sup
α∈[0, π0]

up(α, hp)
|hp | �−∞. (22)

Remark 3.4. It follows from (15), that small production at time T raises the producers’ desire to store, even
when the future demand function is deterministic. This occurs because a possible scarcity of the commodity at
time T would result in higher future spot prices; hence, producers would be better off storing some production
and selling it at time T. On the other hand, higher future production decreases the optimal storage choice.
Hence, the producers’ desire to balance uneven productions is an important feature that influences the optimal
storage choice. �

3.2. Investors’ Optimization Problem
The second step is to analyze the structure and properties of the investors’ optimization problem. Although we
cannot prove the existence of a maximizer at this level of generality, the results we obtain are sufficient to show
the existence of an equilibrium in the next subsection.
Let � be a probability measure on (Ω,F ). The relative entropy H(� | � ) of � with respect to � is defined by

H(� | � )�


Ɛ�

[
ln

(
d�
d�

)]
, if �� � ,

+∞, otherwise.

Given α ∈ [0, π0], the spot price of the commodity PT � PT(α) is provided by (8). Define the function

us(α, hs) :� sup
G∈G

�s(hsPT +G), (23)

for a convex set G of F T-measurable random variables that contains 0. To prove the existence of an equilibrium
we use the following assumptions:
(���) The function hs 7→ us(α, hs) is upper semicontinuous for every α ∈ [0, π0].

The function hs 7→ us(α, hs) is also concave for every α ∈ [0, π0], while the investors’ optimization problem can
be expressed as follows:

Πs
� sup

hs∈�
sup
G∈G

�s(hs(PT − F)+G)� sup
hs∈�
{us(α, hs) − hs F}. (24)

Throughout this section, we will also use the sets

MG :� {�� � : H(� | � ) <∞ and Ɛ�[G] ≤ 0 for all G ∈ G}

and
QX :� {�� � : Ɛ�[|X |] <∞}.

The financial market is free of arbitrage if MG ,�. This is a sufficient condition, but not necessary, since it also
requires that the entropy be finite. In the sequel, we also need the existence of at least one probability measure
in MG that belongs to QX .19 We state these requirements in the following condition:
(��) MG ∩QX ,�.

Proposition 3.5. Assume that (��) holds. Then, for each α ∈ [0, π0] there exists F � F(α) ∈ � such that

lim sup
hs→±∞

us(α, hs)
|hs | < +∞, (25)

and
− u∗s(α, F) :� sup

hs∈�
{us(α, hs) − hs F} < +∞. (26)
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Proof. Fix � ∈MG∩QX . Using (��) and (8) we get that PT �PT(α) ∈ L1(�) for all α ∈ [0, π0]. According to Föllmer
and Schied [26, Lemma 3.29], for each G ∈ G, hs ∈ � and n ∈ � it holds that

�s([hsPT +G] ∨ (−n))�− 1
γs

logƐ[exp{−γs([hsPT +G] ∨ (−n))}] ≤ Ɛ�[(hsPT +G) ∨ (−n)]+ 1
γs

H(� | � ). (27)

Since (PT +G)+ ∈ L1(�) and Ɛ�[G] ≤ 0, monotone convergence implies that

us(α, hs)� sup
G∈G

{
− 1
γs

logƐ[exp{−γs(hsPT +G)}]
}
≤ hsƐ�[PT]+

1
γs

H(� | � ),

which yields (25). Finally, defining F :� Ɛ�[PT] we obtain that

sup
hs∈�
{us(α, hs) − hs F} ≤ 1

γs
H(� | � ) < +∞. � (28)

3.3. Existence of Equilibrium
We are now ready to show that under mild assumptions an equilibrium exists in the general modeling frame-
work described in Section 2. Explicit, and easily verifiable, conditions for the uniqueness of the equilibrium
are also provided. We start with some preparatory results from convex analysis before stating and proving the
main theorem.
According to (19), the producers’ optimization problem is described by

Πp
� sup
α∈[0, π0]

sup
hp∈�
{up(α, hp) − hpF} �− inf

α∈[0, π0]
inf
hp∈�
{hpF − up(α, hp)} � sup

α∈[0, π0]
{−u∗p(α, F)}. (29)

Similarly, from (24) and (26) the investors’ optimization problem is described by

Πs
� sup

hs∈�
{us(α, hs) − hs F} �−u∗s(α, F). (30)

In the sequel, we will use several results from convex analysis; see Rockafellar [50] for a comprehensive intro-
duction. We define the sup-convolution of up and us via

u(α, h) :� sup
hp+hs�h

{up(α, hp)+ us(α, hs)}, (31)

and we know that its conjugate function satisfies

u∗(α, F)� inf
h∈�
{hF − u(α, h)} � u∗p(α, F)+ u∗s(α, F); (32)

cf. Rockafellar [50, Theorem 16.4]. Moreover, it holds that

u(α, h)� inf
F∈�
{hF − u∗(α, F)} (33)

and we know that F belongs to the supergradient of u(α, h), denoted by ∂u(α, h), if the equality

u(α, h)� hF − u∗(α, F) (34)

is satisfied; see Rockafellar [50, Theorem 23.5].
Theorem 3.6. Assume that conditions (Ɛ
), (�ƆƐ), (���) and (��) hold, and suppose that

− γp l(π0 , 0) ∈U◦X . (35)

Then there exists an equilibrium (α̂, ĥ , F̂).
Remark 3.7 (Uniqueness). The equilibrium in Theorem 3.6 is not unique in general, since the supergradient
∂u(α, 0) is not a singleton. However, if the functions hp 7→ up(α, hp) and hs 7→ us(α, hs) are differentiable for all
α ∈ [0, π0], then the equilibrium commodity forward price is unique. Indeed, the proof of Theorem 3.6 yields
that any equilibrium commodity forward price F̂ satisfies F̂ ∈ ∂u(α̂, 0) for the unique optimizer α̂ ∈ [0, π0]. If
up(α̂, ·) and us(α̂, ·) are both differentiable then it follows, for instance from Lemma 1.6.5 in Cheridito [14], that
u(α̂, ·) is differentiable at 0, in which case ∂u(α̂, 0) is a singleton. Moreover, if hp 7→ up(α̂, hp) and hs 7→ us(α̂, hs)
are strictly concave, then the optimal strategy ĥ is also unique. These conditions can be easily verified in the
examples; see Sections 4 and 5. �
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Proof. The proof of this theorem is carried out in three steps and the strategy is represented by the following
diagram:

�n �

F (�n) = F n F  = F (�)

S1

S2

S1
S3

The first step is to show that for every fixed α there exists an equilibrium. Then, we consider a sequence
(αn) maximizing the producers’ utility that converges to some α. The previous step yields the existence of
equilibrium prices F(αn)� Fn and F(α) corresponding to αn and α, respectively. The second step is to show that
the equilibrium prices Fn converge to some limit, denoted by F. The final step is to show that F equals F(α).
Step 1: Fix α ∈ [0, π0]. According to Propositions 3.2 and 3.5, there exists a price F � F(α) ∈ � such that

u(α, h) ≤ sup
hp
{up(α, hp) − hpF}+ sup

hs
{us(α, hs) − hs F}+ hF <∞. (36)

Using (35) and conditions (Ɛ
) and (��) we get that up(α, ·) > −∞ and us(α, ·) > −∞ in a neighborhood of 0.
Hence u(α, ·) > −∞ on a neighborhood of 0, therefore 0 belongs to the interior of domu(α, ·), which by Rock-
afellar [50, Theorem 23.4] implies that ∂u(α, 0),�. Let F(α) be an element of the supergradient ∂u(α, 0). Then

u(α, 0) ≤ sup
hp
{up(α, hp) − hpF(α)}+ sup

hs
{us(α, hs) − hs F(α)}

�−u∗p(α, F(α)) − u∗s(α, F(α))� u(α, 0)� sup
hp+hs�0

{up(α, hp)+ us(α, hs)}, (37)

where the second to last equality follows from (32) and (34) using h � 0. By means of Corollary 3.3 and Propo-
sition 3.5, we deduce that the function h 7→ up(α, h)+ us(α,−h) is concave and tends to −∞ as h→±∞; see in
particular (22) and (25). Therefore, the supremum in (37) is attained for hp(α), hs(α) ∈ � with hp(α)+ hs(α) � 0.
Moreover, it follows from (37) that

hp(α)� arg max{up(hp , α) − hpF(α)} and hs(α)� arg max{us(hs , α) − hs F(α)}.

In other words, for every fixed α ∈ [0, π0] there exists an equilibrium.
Step 2: Consider an optimizing sequence (αn) for the producers’ utility converging to α, then

− u∗p(αn , Fn) −−−→
n→∞

sup
α

{−u∗p(α, F(α))}, (38)

where Fn � F(αn) is the sequence of equilibrium prices corresponding to αn . Let us now prove that the equilib-
rium prices Fn and the optimal strategies hn � hp(αn)�−hs(αn) are bounded; henceforth hn→ h and Fn→ F by
possibly passing to a subsequence.
The upper semicontinuity of up , condition (���), and the definition of the sup-convolution yield that

lim sup
n→+∞

u(αn , 0) ≤ lim sup
n→+∞

{up(αn , hn)+ us(αn ,−hn)} ≤ up(α, h)+ us(α,−h) ≤ u(α, 0),

which is finite by (36). Moreover, due to condition (35) there exists a neighborhood V of 0 such that

inf
hp∈V

inf
n∈�

up(αn , hp) > −∞.

Hence, there exist constants c1 ∈ � and c2 > 0 such that

−u∗p(αn , Fn)� sup
hp∈�
{up(αn , hp) − Fn hp} ≥ c1 + c2 |Fn |

and similarly −u∗s(αn , Fn) ≥ c1 + c2 |Fn |. Therefore, 2c1 + 2c2 |Fn | ≤ supn∈� u(αn , 0) < +∞ showing that (Fn) is
bounded. Since

−u∗p(αn , Fn)� up(αn , hn) − hnFn ,

it follows from Corollary 3.3 that (hn) is also bounded.
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Step 3: Finally, the goal is to identify F as the desired equilibrium price, that is, prove that F � F(α). We start
by showing that

u∗p(αn , Fn) −−−→
n→∞

u∗p(α, F). (39)

Indeed, by continuity of up(α, hp) in α we get that hpFn − up(αn , hp)→ hpF− up(α, hp). Thus, by the definition of
the conjugate u∗p(α, F)� infhp {hpF − up(α, hp)}, it follows that

lim sup
n→∞

u∗p(αn , Fn) ≤ u∗p(α, F).

Moreover, equilibrium prices belonging to the supergradient of u, ensure that

lim inf
n→∞

u∗p(αn , Fn)� lim inf
n→∞

{hnFn − up(αn , hn)} ≥ hF − up(α, h) ≥ u∗p(α, F)

and thus lim infn→∞ u∗p(αn , Fn) ≥ u∗p(α, F). Hence (39) holds. The same argumentation implies that u∗s(αn , Fn)→
u∗s(α, F).
Next, we show that u(αn , 0)→ u(α, 0). On the one hand, there exists an h′ ∈ � such that

u(α, 0)� up(α, h′)+ us(α,−h′)� lim
n→∞
{up(αn , h′)+ us(αn ,−h′)} ≤ lim inf

n→∞
u(αn , 0).

The first equality holds since the supremum is attained; the second follows from the continuity of up and us
in α, and the last one by (31). On the other hand, (hn) converging to h implies

lim sup
n→∞

u(αn , 0)� lim sup
n→∞

{up(αn , hn)+ us(αn ,−hn)} ≤ up(α, h)+ us(α,−h) ≤ u(α, 0),

using the same argumentation for each equality as above.
Summarizing, using the convergence of the sup-convolutions, (34), (32), and the convergence of the conjugates,

we arrive at
u(α, 0)� lim

n→∞
u(αn , 0)� lim

n→∞
{−u∗p(αn , Fn) − u∗s(αn , Fn)} �−u∗p(α, F) − u∗s(α, F). (40)

In particular, the sup-convolution u(α, 0) is attained at hp(α)� h and hs(α)�−h ∈� for which hp(α)+ hs(α)� 0.
Therefore, according to (38) and (40) the pair (α, hp(α)) and hs(α) are optimal trading strategies for the price F
which satisfy the clearing condition. Hence, (α, hp(α), F) is an equilibrium. �

4. A Model with Continuous Trading and Dependent Markets
In this section, we consider a model where investors are allowed to trade continuously over time in the financial
market, while the dynamics of the financial and the commodity markets are dependent and driven by Lévy
processes. The aim is to derive explicit representations for the optimization problems of the producers and the
investors.
Lévy processes have been used for modeling financial variables, such as stocks or interest rates, whose return

distributions exhibit fat tails and skew, because they can combine realistic features with analytical tractability;
see e.g., Carr et al. [12], Cont and Tankov [18], Eberlein [20] and Schoutens [54]. Gorton and Rouwenhorst [29]
provide evidence that commodity futures exhibit similar behavior. Using Lévy processes, we can easily combine
diffusions with jump processes, while different types of dependence structures can also be incorporated.

In the model considered in this section, investors observe the evolution of the consumers’ demand through
time and dynamically adjust their trading strategy.20 Moreover, the uncertainty in the evolution of the con-
sumers’ demand and the evolution of the financial market are dependent processes that can exhibit “shocks”
(i.e., large jumps). Producers are trading in the forward market only at discrete time instances, associated with
their production schedule.21 This setting reflects real-world situations in the sense that the arrival of certain
news can affect the demand for a certain commodity as well as the financial market, these processes are observ-
able over time, and investors typically trade continuously in the financial market and adjust their portfolios
according to new information.
Consider a complete stochastic basis (Ω,F ,F,� ) where F � (F t)t∈[0,T] denotes the filtration (flow of informa-

tion). Let Z � (Zt)t∈[0,T] be an �d-valued Lévy process with characteristic triplet (b , c , ν), where b ∈ �d , c is a
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symmetric, non-negative definite d× d matrix and ν is a Lévy measure; see e.g., Applebaum [5], Kyprianou [46]
or Sato [53] for more details on Lévy processes. Denote the set of exponential moments of Zt , t ∈ [0,T], by

UZ � {u ∈ �d : Ɛ[e〈u ,Zt 〉] <∞} �
{

u ∈ �d :
∫
|x |>1

e〈u , x〉ν (dx) <∞
}
. (41)

This set is convex and contains the origin, cf. Sato [53, Thm. 25.17]. Assuming that 0 ∈U◦Z , exponential moments
exist and the Lévy–Itô decomposition takes the form

Zt � bt +
√

cWt +

∫ t

0

∫
�d

x(µZ − νZ) (ds ,dx), (42)

where µZ is the random measure of jumps of the process Z with compensator νZ � Leb⊗ ν, where Leb denotes
the Lebesgue measure. The moment generating function of Zt is well defined for every u ∈ UZ and we know
from the Lévy–Khintchine formula that

Ɛ[e〈u ,Zt 〉]� exp(tκ(u)), (43)

where κ denotes the cumulant generating function of Z1, that is

κ(u)� 〈u , b〉 + 〈u , cu〉
2 +

∫
�d
(e〈u , x〉 − 1− 〈u , x〉)ν (dx). (44)

Moreover, if 0 ∈ U◦Z , then the cumulant generating function κ is real analytic in the interior of U and thus
smooth; cf. Eberlein and Glau [21, Lemma 2.1].
The uncertainty in the financial and the commodity markets is modeled using the Lévy process Z and a

factor structure. More precisely, we consider vectors u1 , u2 ∈ �d that specify how Z influences each market. We
incorporate the financial market in a representative stock index whose discounted price process S is modeled by

St � S0eYt where Yt � 〈u1 ,Zt〉, (45)

with S0 ∈ �+ and t ∈ [0,T]. Moreover, the random variable X that determines the consumers’ demand function
at the terminal time is modeled via

X � 〈u2 ,ZT〉. (46)

4.1. The Producers’ Optimization Problem Revisited
The cumulant generating function of the random variable X � 〈u2 ,ZT〉 in this setting, using (43), takes the form

κX(v)� κ(vu2)T �: κ2(v)T, (47)

and the set of exponential moments equals UX � {v ∈�: vu2 ∈UZ}. Therefore, the function up in the producers’
optimization problem (19)–(20) can be rewritten as

up(α, hp)�

q(α, 0) − 1

γp
κ2(−γp l(α, hp))T − hp l(α,−µ), if (α, hp) ∈ ŨX ,

−∞, otherwise.
(48)

Moreover, if conditions (Ɛ
) and (�ƆƐ) are satisfied, this function is concave, upper semicontinuous, and
coercive; cf. Corollary 3.3.

Remark 4.1. Let us briefly discuss for which Lévy processes conditions (Ɛ
) and (�ƆƐ) are satisfied. Condition
(Ɛ
) is standard in mathematical finance and is satisfied by the majority of Lévy models, for example, by
the generalized hyperbolic, the Carr-German-Madan-Yor (CGMY), and the Meixner processes. The set UZ is
bounded for the majority of Lévy models, in particular for those mentioned earlier. The only exceptions popular
in mathematical finance are Brownian motion and Merton’s jump-diffusion model. In these cases, however, the
existence of a Brownian part ensures that (�ƆƐ) is satisfied. �
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4.2. The Investors’ Optimization Problem Revisited
The investors in this setting can trade continuously in the asset S that incorporates the financial market according
to an admissible strategy θ. In other words, the set of trading outcomes equals

G �

{
GT(θ)�

∫ T

0
θu dSu : θ ∈Θ

}
,

where the set of admissible trading strategies is defined by

Θ� {θ ∈ L(S): G(θ) is a �-martingale for every � ∈M f }, (49)

while L(S) denotes the set of predictable, S-integrable processes and M f the set of absolutely continuous local
martingale measures with finite entropy, that is

M f � {�� � on F T : S is a �-local martingale and H(� | � ) <∞}. (50)

The (��) condition is subsequently adjusted to the following:
(��′) M f ∩QX ,�.

The investors’ position (9) now takes the form

w̄(θ, hs)� hs(PT − F)+GT(θ); (51)

the aim is to derive an explicit expression for their optimization problem, in particular for the function us(α, hs)
in (23).
Define the measure � s via the Radon–Nikodym derivative

d� s

d� �
exp(−γs hsPT)

Ɛ[exp(−γs hsPT)]
(8)
�

exp(−(γs hs/m)X)
Ɛ[exp(−(γs hs/m)X)]

(46)
�

exp(−〈(γs hs/m)u2 ,ZT〉)
Ɛ[exp(−〈(γs hs/m)u2 ,ZT〉)]

, (52)

for every hs such that −(γs hs/m)u2 ∈UZ . The following lemma provides the dynamics of process Z under � s .

Lemma 4.2. The process Z remains a Lévy process under � s with cumulant generating function provided by

κs (v)� κ(v + ξ) − κ(ξ), (53)

where ξ :� −(γs hs/m)u2, for all v ∈ �d such that v + ξ ∈UZ . Moreover, the Lévy triplet of the univariate Lévy process
〈ui ,Z〉, i � 1, 2, under � s is provided by

bs
i � 〈ui , b〉 + 〈ui , cξ〉 +

∫
�d
〈ui , x〉(e〈ξ, x〉 − 1)ν (dx), cs

i � 〈ui , cui〉,

νs
i (E)�

∫
�d

1E(〈ui , x〉)e〈ξ, x〉ν (dx), E ∈B(�d).

Proof. See e.g., Shiryaev [55, Theorem VII.3.1] for the first part and Eberlein et al. [23, Theorem 4.1] for the
second. �

The exponential transform of the process Y � 〈u1 ,Z〉 is denoted by Ỹ, that is E(Ỹ)� eY . The process Ỹ is again
a Lévy process and its triplet, relative to � s , is given by

b̃s
1 � bs

1 +
cs

1

2 +

∫
�

(ex − 1− x)νs
1 (dx)� κs

1(1), c̃s
1 � cs

1 � c1 , (54)

ν̃s
1(E)�

∫
�

1E(ex − 1)νs
1 (dx), E ∈B(�);

see Kallsen and Shiryaev [41, Lemma 2.7]. Here, κs
1 denotes the cumulant generating function of Y under � s

and is given by (43) using the triplet (bs
1 , c

s
1 , ν

s
1).

Now, recalling (10) and (51), the investors’ utility takes the following form:

�s(w̄(θ, hs))�− 1
γs

logƐ[exp(−γs[hs(PT − F)+GT(θ)])]
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(8)
� − 1

γs
logƐ

[
exp

(
−γs

[
hs

m
X +GT(θ)

] )]
+C1(hs , α, F)

(52)
� − 1

γs
logƐs[exp(−γs GT(θ))]+C1(hs , α, F) −C2(hs), (55)

where

C1(hs , α, F) :� hs

(
φ0(πT) −

α(1− ε)
m

− F
)

and C2(hs) :� T
γs
κ2

(
−
γs hs

m

)
. (56)

The next result provides the solution of the optimization problem with respect to the financial market. We
will also use the following condition:
(�Ɛ) There exists η∗ ∈ � such that ∫

{x>1}
exeη∗ex

νs
1 (dx) <∞, (57)

which solves the equation

∂
∂v
κ̃s

1(v)|v�η∗ � 0, (58)

where κ̃s
1 denotes the cumulant generating function of Ỹ under � s .

Proposition 4.3. Assume that (Ɛ
) and (�Ɛ) hold. Then

sup
θ∈Θ

{
− 1
γs

logƐs[exp(−γs GT(θ))]
}
�− 1

γs
κ̃s

1(η∗)T. (59)

Proof. According to Fujiwara [27, Theorem 4.2] and using condition (�Ɛ), we have that

sup
θ∈Θ

{
− 1
γs

logƐs[exp(−γs GT(θ))]
}
�− 1

γs
log inf

θ∈Θ
Ɛs[exp(−γs GT(θ))]�

1
γs

inf
�∈M f

H(� | � s )�
1
γs

H(� ∗ | � s ), (60)

where � ∗ denotes the measure minimizing the relative entropy with respect to � s .
The function x 7→ |ex − 1|eη∗(ex−1) is submultiplicative and bounded by exeη∗ex on {x > 1}; thus, condition (�Ɛ)

in conjunction with Sato [53, Theorem 25.3] and (54) yield that

Ɛs[|ỸT |eη∗ỸT ] <∞.

Applying Hubalek and Sgarra [38, Theorems 4 and 8], we get that the minimal entropy martingale measure for
eY exists and coincides with the Esscher martingale measure for Ỹ. The latter is provided by

d� ∗
d� s

�
eη∗ỸT

Ɛs[eη∗ỸT ]
, (61)

where η∗ is the root of Equation (58). Finally, using the martingale property of Ỹ (cf. Hubalek and Sgarra [38,
Remark 4]), we deduce that

H(� ∗ | � s )� Ɛ∗[η∗ỸT − κ̃s
1(η∗)T]�−κ̃s

1(η∗)T,

which, in turn, implies the desired result. �

Therefore, using (55)–(56) and Proposition 4.3, the investors’ optimization problem can be written as

Πs
� sup
θ∈Θ, hs∈�

{
− 1
γs

logƐs[exp(−γs GT(θ))]+C1(hs , α, F) −C2(hs)
}

� sup
hs∈�

{
− T
γs

(
κ̃s

1(η∗)+ κ2

(
−
γs hs

m

))
+ hs

(
φ0(πT) −

α(1− ε)
m

− F
)}
. (62)



Anthropelos et al.: An Equilibrium Model for Spot and Forward Prices of Commodities
Mathematics of Operations Research, Articles in Advance, pp. 1–29, ©2017 INFORMS 15

In other words, recalling (24) and (26), the investors’ optimization problem has the representation

Πs
� sup

hs∈�
{us(α, hs) − hs F} �−u∗s(α, F), (63)

where the function us(α, hs) admits the explicit expression

us(α, hs)�


− T
γs

(
κ̃s

1(η∗)+ κ2

(
−
γs hs

m

))
+ hs

(
φ0(πT) −

α(1− ε)
m

)
, if −

γs hs

m
u2 ∈UZ ,

−∞, otherwise.
(64)

Remark 4.4. Using the upper semicontinuity and the smoothness of the cumulant generating function together
with the inverse function theorem, it follows from the explicit expression (64) that the function hs 7→ us(α, hs)
is upper semicontinuous. Thus, condition (�ƆƐ) is automatically satisfied in the current setting (provided that
(Ɛ
) and (�Ɛ) hold). �
Remark 4.5. Let us also discuss for which Lévy processes conditions (��′) and (�Ɛ) are satisfied. (��′) is rather
mild since it requires the existence of an equivalent martingale measure (EMM) with finite entropy under which
the random variable X � 〈u2 ,ZT〉 has finite first moment. Explicit constructions of EMMs for Lévy processes are
studied in Eberlein and Jacod [22] and in Cherny and Shiryaev [16]. (�Ɛ) is also standard in the literature related
to exponential utility maximization and entropic hedging. Hubalek and Sgarra [38] provide explicit parameter
regimes for this condition to be satisfied, which fit well with empirical data. �

Remark 4.6. Condition (��′) implies that the investors’ indifference price for the commodity is bounded from
above. More precisely, the (buyer’s) indifference price for a random payoff CT is defined as the solution p(CT)
of the equation

sup
G∈G

�s(G−p(CT)+CT)� sup
G∈G

�s(G).

According to Delbaen et al. [19, Section 5.2] or Fujiwara and Miyahara [28, Section 4] (see also Laeven and
Stadje [47]), the indifference price of an agent with exponential utility and risk aversion equal to γs admits the
following representation

p(CT)� inf
�∈M f

{
Ɛ�[CT]+

1
γs

H(� | � )
}
− 1
γs

H(�∗ | � ), (65)

where �∗ is the martingale measure minimizing the entropy with respect to � . With this at hand, (8) yields the
assertion. �

We conclude this subsection with a statement analogous to Proposition 3.2 for the investors’ side, thereby
strengthening the results of Proposition 3.5. More specifically, we show that the investors’ optimization problem
admits a maximizer for every α ∈ [0, π0] and every forward price in the no-arbitrage interval, which is defined by

NA :�
(

inf
�∈M f

Ɛ�[PT], sup
�∈M f

Ɛ�[PT]
)
.

Proposition 4.7. Assume that conditions (Ɛ
), (�Ɛ), and (��′) hold. Then, for every F ∈NA and α ∈ [0, π0] there exists
a maximizer ĥs ∈ � for the producers’ problem Πs such that −(γs/m)ĥs u2 ∈UZ .

Proof. By the definition of indifference valuation and the cash invariance property of the utility functional �s ,
we have that

us(α, hs)� sup
θ∈Θ

�s(GT(θ))+p(hsPT). (66)

Building on the above representation, it suffices to show that p(hsPT) − hs F is concave, upper semicontinuous,
and coercive. Concavity is readily implied by (65), while upper semicontinuity follows from the fact that us is
upper semicontinuous; cf. Remark 4.4. As for coercivity, again using (65) we get that for every hs > 0

p(hsPT) − hs F � inf
�∈M f

{
Ɛ�[hsPT]+

1
γs

H(� | � )
}
− 1
γs

H(�∗ | � ) − hs F

� hs

(
inf
�∈M f

{
Ɛ�[PT]+

1
hsγs

H(� | � )
}
− 1

hsγs
H(�∗ | � ) − F

)
.
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Moreover, it holds that

inf
�∈M f

{
Ɛ�[PT]+

1
hsγs

H(� | � )
}
− 1

hsγs
H(�∗ | � ) −−−−−→

hs→+∞
inf
�∈M f

{Ɛ�[PT]};

Hence, p(hsPT) − hs F goes to −∞ as hs → +∞, for every F ∈ NA. The limit as hs → −∞ follows by similar
argument and using the payoff −PT instead of PT . �

Remark 4.8. Proposition 4.7 states that for every fixed pair of parameters (α, F) ∈ [0, π0] × NA, the individual
problem of the investors admits a finite solution. This solution is unique if the indifference price p(hsPT) is
strictly concave as a function of hs . In view of representation (65), strict concavity is guaranteed if {Ɛ�[X]: � ∈
M f } is not a singleton, meaning that the variate X determining the consumers’ demand is not a replicable
payoff. �

4.3. The Equilibrium Revisited
Finally, we further strengthen the result on the existence of an equilibrium in the current setting by showing
that the equilibrium forward price is unique and belongs to the no-arbitrage interval.

Proposition 4.9. Assume that conditions (Ɛ
), (�ƆƐ), (���), (��′), and (35) hold. Then there exists an equilibrium
(α̂, ĥ , F̂), where F̂ ∈ NA is unique.

Proof. In view of Theorem 3.6, we need only show that F̂ ∈ NA and is unique. Assume, for instance, that
F̂ ≤ inf�∈M f

Ɛ�[PT]. Taking into account the proof of Theorem 3.6 as well as representations (65) and (66), we
get that

ĥs
� arg max

hs∈�
{us(hs , α̂) − hs F̂} � arg max

hs∈�
{p(hsPT(α̂)) − hs F̂}

� arg max
hs∈�

{
inf
�∈M f

{
hs(Ɛ�[PT(α̂)] − F̂)+ 1

γs
H(� | � )

}}
�+∞

The last statement contradicts the fact that ĥs + ĥp � 0 and ĥp ∈ �. The uniqueness of F̂ follows from the
smoothness of the cumulant generating function and the inverse function theorem, together with Remark 3.7. �

Remark 4.10. Assumption (�Ɛ) guarantees that there exists an optimal trading strategy for the investors and is
necessary to derive the explicit expression (64). However, it is not a necessary condition for the existence of an
equilibrium. �

5. Examples, Numerical Illustrations, and Discussion
In this final section, we consider two specific models for the evolution of the financial market and the consumers’
demand. The first model is driven by correlated Brownian motions; the second incorporates dependent jumps
in addition. In the first case, we derive explicit expressions for the optimal storage policy and the optimal
forward volume; the equilibrium price follows by the market clearing condition (12). In the second case, we
derive semi-explicit expressions for the optimal storage policy and the optimal forward volume; the equilibrium
price is then numerically computed. Thereafter, we study the effect of the various parameters, in particular the
risk aversion coefficients of both agents and the production levels, in the formation of spot and forward prices.

5.1. A Model Driven by Brownian Motion
In the first example, the dynamics of the variates X and Y determining the consumers demand and the financial
market are driven by correlated Brownian motions. Specifically

Yt � b1t + σ1W1
t and Xt � σ2W2

t , (67)

where W1, W2 are standard Brownian motions with correlation ρ ∈ [−1, 1]. Moreover, using (8), the mean and
variance of the spot price are given by

Ɛ[PT]� φ0(πT) −
α(1− ε)

m
and �ar[PT]�

σ2
2T

m2 . (68)

The following result provides an explicit expression for the optimal inventory policy and the optimal investment
in the forward contract.
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Proposition 5.1. Assuming the model dynamics provided by (67), the optimal strategy (α̂, ĥp) for the producers’ problem
is given by

α̂ �

(
d3d5 − 2d2d4

4d1d4 −d2
3

∨ 0
)
∧ π0 and ĥp

�− α̂d3 +d5

2d4
, (69)

while the optimal position ĥs for the investors’ problem equals

ĥs
�

Ɛ[PT] − F
γ̄s �ar[PT]

−
λρ
√

T

γ̄s

√
�ar[PT]

. (70)

Here, the constants d1 , . . . ,d5 are provided by (A.5) and γ̄s � γs(1− ρ2).

The proof of the preceding Proposition is provided in the Appendix A.
The equilibrium forward price F̂ will be endogenously derived via the clearing condition (12). Note that

α̂, ĥp , and ĥs all depend on F̂. Thereafter, the equilibrium spot price of the commodity at the initial time is
provided by

P0(F̂)� φ0(π0)+
α̂(F̂)

m
. (71)

In this example, the forward price and the optimal forward position are unique; this follows from Remark 3.7,
Proposition 4.9, and the fact that up(α̂, ·) and us(α̂, ·) are strictly concave; see their explicit forms in (A.4)
and (A.15).
Figures 1, 2, and 6 show how the storage amount, the forward volume, the spot price, the forward premium,

and the convenience yield at the equilibrium depend on the correlation between the consumers’ demand and
the financial market, as well as on the producers’ and investors’ risk aversion coefficients; see also the discussion
in Subsection 5.3.

Remark 5.2. Let us consider the case α∗ � 0. Then, the optimal position for the producers simplifies to

ĥp(F)� Ɛ[PT] − F
γp �ar[PT]

− πT (72)

and the clearing condition (12) yields that the equilibrium forward price is provided by

F̂ � Ɛ[PT] −
γp γ̄s

γp + γ̄s
�ar[PT]

(
λρ
√

T

γ̄s

√
�ar[PT]

+ πT

)
. � (73)

Remark 5.3. In case there does not exist a forward contract that the producers could use for hedging, hence,
there are also no investors in the market, the producers’ optimization problem takes the form

Π
p
nf � max

α∈[0, π0]
{d1α

2
+d2α+d′3}, (74)

where d1 ,d2 are given by (A.5). Therefore, the optimal storage strategy equals

α̂ � (α∗ ∨ 0) ∧ π0 with α∗ �− d2

2d1
, (75)

and the spot price of the commodity is

P0(α̂)� φ0(π0)+
α̂
m
. �
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Figure 1. (Color online) Equilibrium Storage Amount (Top-Left), Volume in Forward Contracts (Top-Right), Spot Price
(Bottom-Left), and Forward Premium (Bottom-Right) as a Function of Correlation for Different Values of the Producers’
Risk Aversion γp
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5.2. A Jump-Diffusion Model
In the next example, the dynamics of the variates that determine the consumers’ demand and the financial
market are driven by a Lévy jump-diffusion process, where the Brownian motion represents the “normal” mar-
ket behavior while the jumps simultaneously appear and represent some “shocks,” e.g., news announcements,
that affect the financial asset price and the demand for the commodity. More precisely, the dynamics of the
processes Y and X are described by

Yt � b1t + σ1W1
t + η1Nt and Xt � b2t + σ2W2

t + η2Nt , (76)

where the drift term equals bi � b̄i − ληi with b̄i , ηi ∈ � and σi ∈ �+, i � 1, 2. Furthermore, W1, W2 are standard
Brownian motions with correlation ρ, while N is a univariate Poisson process with intensity λ ∈�+. Hence, the
constants η1 and η2 represent the effect of a jump in the financial market and the demand for the commodity,
respectively.
Moreover, assuming b̄2 � 0 as in the previous example, the expectation of XT equals zero and using (8) we

get that

Ɛ[PT]� φ0(πT) −
α(1− ε)

m
and �ar[PT]�

σ2
2 + λη

2
2

m2 T. (77)

Observe that the presence of jumps, negative or positive, increases the variance of the spot price PT relative to
the Brownian motion example. The next result provides an expression for the optimal inventory policy and the
optimal investment in the forward contract.
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Figure 2. (Color online) Equilibrium Storage Amount (Top-Left), Volume in Forward Contracts (Top-Right), Spot Price
(Bottom-Left), and Forward Premium (Bottom-Right) as a Function of Correlation for Different Values of the Investors’
Risk Aversion γs
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Figure 3. (Color online) Equilibrium Storage Amount as a Function of Correlation for a Market With and Without Forward
Contract
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Figure 4. (Color online) Expected Percentage Price Changes (Ɛ[P̂t] − P̂0)/P̂0 as a Function of the Production πT (Given That
π0 � 100) With and Without Forward Contract

40 60 80 100 120 140

–40

–20

0

20

40

60

Production at time T

40 60 80 100 120 140

Production at time T

E
xp

ec
te

d 
pe

rc
en

ta
ge

 c
ha

ng
e 

of
sp

ot
 p

ric
es

 (
%

)

–40

–20

0

20

40

60

E
xp

ec
te

d 
pe

rc
en

ta
ge

 c
ha

ng
e 

of
sp

ot
 p

ric
es

 (
%

)

With forward
Without forward

Note. On the left, the correlation ρ � 0.2 and on the right ρ � 0.7.

Proposition 5.4. Assuming the model dynamics provided by (76), the optimal strategy α̂, ĥp for the producers’ problem
is provided by α̂ � (α∗ ∨ 0) ∧ π0 and ĥp � hp ,∗(α̂) where (α∗ , hp ,∗) solve the system of equations{

2d1α+d2 +d3hp
+ (λη2T(1− ε))/(m)e−γpη2 l(α, hp )

� 0,
d3α+ 2d4hp

+d5 + (λη2T)/(m)e−γpη2 l(α, hp )
� 0.

(78)

Here d1 , . . . ,d5 are given by (A.5) by replacing �ar[PT] with σ2
2T/m2. The optimal investment for the investors’ problem

ĥs is provided by the solution to the equation

∂
∂hs

{
− T
γs

[
κ̃s

1(η∗)+ κ2

(
−
γs hs

m

)]}
� F − Ɛ[PT], (79)

where η∗ is given by (A.31).

The proof of the preceding Proposition is provided in the Appendix A.
Similar to the previous example, the unique equilibrium forward price F̂ is endogenously derived via the

clearing condition (12), by noting again that α̂, ĥp and ĥs depend on F̂, and the equilibrium spot price of the
commodity at the initial time is again given by (71). Therefore, to determine the equilibrium we need to solve
Equations (78) and (79). To this end, we used numerical techniques, and have subsequently examined the impact
of jumps on equilibrium quantities; see Figure 5 and the discussion in Subsection 5.3.

Remark 5.5. Using an independent Brownian motion instead of the Poisson process in (76), we can get the
same first and second moments for PT as those in (77). This will also result in higher forward premia. However,
jump processes are more appropriate models for the shocks that occur in random times. In addition, jumps (by
contrast to another Brownian motion) allow for asymmetries in the distributions, such as fat tails and skewness.
See also the discussion in the introduction of Section 4. �

5.3. Discussion of the Results
Producers’ Risk Aversion and Spot/Forward Prices. We use the above results to create several figures that
illustrate the effect of the model parameters on the equilibrium quantities. We first examine the producers’ side.
The quantities that the producers have to consider are provided by

¯
w(α, hp) in (1). We may split the terms into

deterministic and stochastic. The deterministic part consists of the spot revenues from selling π0 − α units of
the commodity at the spot price P0, the expected future revenues from selling πT + α(1− ε) units at the price
Ɛ[PT], and the expected payoff of the short position hp in forward contracts. The stochastic term stems from
the randomness of the future price PT and equals [α(1 − ε) + hp + πT]X/m. Clearly, the deterministic term is
decreasing with respect to α. However, the risk in the stochastic term is also reduced for decreasing storage
amounts. Assuming that Ɛ[X] � 0, this risk is minimized when the quantity α(1 − ε) + hp + πT vanishes, that
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Figure 5. (Color online) Equilibrium Spot Price (Left) and Forward Premium (Right) as a Function of Correlation for
Different Values of the Demand Shock Effect η2 (in This Example η1 � 0)
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is, when all the future sales are hedged.22 Hence, a large amount of the commodity in storage implies a large
position to be hedged and vice versa (all else equal).
Considering only the deterministic term, and assuming that µ is sufficiently large, producers have motive to

store their production only if πT is relatively smaller than π0 (recall the discussion in Remark 3.4). In any case,
storing part of their production now increases the spot price of the commodity. In addition, because producers
are risk averse, to hedge their future risk exposure, they are willing to share some of their future revenues
by taking a short position in the forward contract. Naturally, the higher the risk aversion the larger the short
position in the forward contract (see top-right of Figure 1) and the higher the forward premium paid to the
investors (see bottom-right of Figure 1). Moreover, a larger position in forward contracts implies an increasing
tendency for storage; thus, higher risk aversion leads to increased storage amounts (see the top-left of Figure 1).
To summarize, even when the production levels at time 0 and T are close, producers with higher risk aversion
tend to store more of their production when they can hedge the risk of future sales, a result that is consistent
with the theory of storage. This strategy increases the spot price of the commodity (see bottom-left of Figure 1).
This result is further supported by the model without a forward contract in the market, see Remark 5.3. There,

we observe that the only motive for the producers to store the commodity stems from the possible uneven
productions (i.e., the difference between π0 and πT). This motive to store is increased when partial hedging is
possible through trading in forward contracts. In fact, as illustrated in Figure 3, the optimal storage is always
higher in the model with forward contract, for every level of uneven productions, while for πT close to or higher
than π0, the optimal storage without forward contract is zero. Thus, spot prices in the model without forward
contract are always lower compared to the model with forward. However, higher storage implies that the future
expected spot price decreases (see for instance relation (68)), assuming that there is no rolling of the position
in the forward contracts. Hence, while forward contracts tend to increase the spot commodity price, they also
tend to decrease the future spot price. Therefore, the presence of forward contracts in the commodity market
stabilizes prices when the production levels are uneven. This is apparent in Figure 4, where the expected price
changes (Ɛ[P̂T] − P̂0)/P̂0 are illustrated for different values of πT . In this example, we note that when there is
scarcity of the commodity at time T, forward contracts serve to stabilize commodity spot prices. On the contrary,
when the production at initial time is lower than that at terminal time, the expected price difference remains
the same with and without the forward contract.
Let us also discuss the effect of jumps in the equilibrium quantities. Figure 5 illustrates the effect of a possible

side shock in the consumers’ demand stemming from a jump. This jump not only increases the risk of the
future price but is also unhedgeable, since it is independent from the evolution of the stock market (we have
assumed η1 � 0). Therefore, the forward premium paid to the investors is higher, irrespective of the sign of the
jump (see the right part of Figure 5). Moreover, when the future price is riskier, recalling the discussion above,
we conclude that the more risk averse the producers are the more they increase the amount they store; hence,
they also increase the spot price of the commodity (see the left part of Figure 5). In addition, note that the sign
of the jump makes little difference in the equilibrium quantities (if the expectation of the future demand shock
is kept equal to zero).
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The effect of the producers’ risk aversion on market equilibrium can be used to examine how the number
of producers affects the equilibrium commodity prices. In the present framework of CARA preferences, the
parameter 1/γp measures the producers’ aggregate risk tolerance. Therefore, if the number of producers increases,
the parameter γp decreases and the analysis above implies that equilibrium spot prices are lower, as expected.
Investors’ Risk Aversion and Spot/Forward Prices. Let us now examine the investors’ side. When they become
more risk averse, they are less willing to undertake the risk of a forward position. This is illustrated in Figure 2
(top-right), where the percentage ĥ/(πT + α̂) (i.e., the percentage of forward contracts with respect to the total
supply at time T) is plotted. Also, as the theory of normal backwardation states, more risk averse investors
would require higher forward premium to enter into the forward contract. This premium is usually measured
by the fraction (Ɛ[P̂T] − F̂)/F̂ which is plotted in Figure 2 (bottom-right). On the other hand, a higher forward
premium implies that hedging is more expensive for the producers, hence they intend to supply more in the
spot market and store less; note that the optimal storage amount even equals zero in some cases as top-left
of Figure 2 shows). Summarizing, when investors are more risk averse they invest less in forward contracts,
which reduces the amount that producers can use for hedging; thus, producers offer more on the spot market,
rendering equilibrium spot prices lower (see bottom-left of Figure 2).
Turning our attention to the effect of the correlation between the consumers’ demand and the financial

markets’ return, note that the equilibrium quantities mainly depend on the square of ρ; this is basically because
investors can go long and short in the stock market. When ρ2 increases, the effective risk aversion of the
investors’, which is γ̄s � γs(1− ρ2), decreases. Therefore, an increase of ρ2 is eventually equivalent to a decrease
of γs . This is expected: When the financial and the commodity markets are correlated, the investors can partially
hedge the risk they undertake on a forward commodity contract by adjusting their investment strategy in the
stock market accordingly. Hence, they become more risk tolerant. The dependence of the equilibrium quantities
on the correlation coefficient ρ is illustrated in Figure 2.
The effect of the investors’ risk aversion on market equilibrium can be used to examine how the number

of investors affects the equilibrium commodity prices. In the present framework of CARA preferences, the
parameter 1/γs measures the investors’ aggregate risk tolerance. Hence, if the number of investors increases,
the parameter γs considered in the above analysis decreases. As we have seen, the latter implies, among other
things, higher equilibrium spot prices. This theoretical result is consistent with the observed co-movement of the
amounts invested in the commodity forward contracts and the commodity spot prices (see related discussion
in the introduction).
Convenience Yield, Correlation, and Uneven Productions. As mentioned in the introduction, the convenience
yield is a measure of the implicit benefit that inventory holders receive. Positivity of the convenience yield is
consistent with the theory of storage. In our model, the convenience yield denoted by y solves the equation

F � P0
1+R
1− ε − yP0 , (80)

see e.g., Acharya et al. [1]. The relation of the yield with respect to the risk aversion coefficients of the producers
and the investors is illustrated in Figure 6. As expected, y is increasing with respect to both risk aversion coeffi-
cients (all else equal). The relation for the producers’ side follows readily from Figure 1, since higher producers’
risk aversion implies higher spot equilibrium price and higher forward premium (and also lower equilibrium
forward price). Similarly, as the risk tolerance of the investors decreases, the cost of hedging increases, which
makes producers sell more at the spot rather than storing and selling at a future date (see, in particular, bottom-
right of Figure 2).
The relation of the yield with respect to the correlation coefficient is more involved. When ρ2 increases, there

are two effects of opposite directions on the convenience yield. The first is negative and stems from the decrease
of the investors’ effective risk aversion; the second is positive and comes from the corresponding increase of the
spot price (see bottom-left of Figure 1). The final outcome depends on the level of the risk aversions and the
difference of production levels (see Figures 6 and 7). In particular, assuming that production levels are close to
each other, when producers are sufficiently risk averse (tolerant), y is decreasing (increasing) in ρ2. Note also
that the steep increase of the convenience yield when ρ approaches zero (right graph on Figure 6) occurs when
the storage is zero (compare with top-left of Figure 2), since in this case only the negative effect of ρ2 in the
convenience yield occurs; when the storage is zero, the spot price does not increase.
On the other hand, the difference between the production levels π0 and πT could change the monotonicity of

the convenience yield with respect to the correlation coefficient. Indeed, when production at time T is sufficiently
larger than the initial production, storage is decreasing; hence, the negative effect of ρ in the convenience yield



Anthropelos et al.: An Equilibrium Model for Spot and Forward Prices of Commodities
Mathematics of Operations Research, Articles in Advance, pp. 1–29, ©2017 INFORMS 23

Figure 6. (Color online) Equilibrium Convenience Yield as a Function of Correlation for Different Values of Producers’ Risk
Aversion γp (Left) and Investors’ Risk aversion γs (right), When the Production Levels Are Equal (π0 � πT)
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prevails. As the difference πT−π0 decreases, the positive effect that stems from the increased spot price becomes
more influential, especially when producers are less risk averse (right of Figure 7).
Finally, and as expected, for any correlation level, scarcity of commodity at initial time implies higher con-

venience yield (see both sides of Figure 7). In particular, when πT is sufficiently larger than π0, the influence
of the correlation ρ on the convenience yield Increases; this reflects the producers’ benefit from satisfying
their increased hedging through the forward contract (the latter is more intense when producers are more risk
averse).

Remark 5.6. In Acharya et al. [1], the authors present an extensive empirical analysis, based on an equilibrium
model simpler than the one we have established and developed above. In Section 3, data from spot and future
oil and gas markets is used to test the predictions of the model. Our model offers a much richer set-up, not
only with regard to the families of probability distributions but also because it includes in the analysis the
relation of commodity and stock markets. One could apply similar methodology to test the predictions of our
model, in particular the relation between the correlation of the stock market and the commodity demand with
the forward premia, the volume in forward contracts, and the optimal storage amount. We leave this interesting
task as a subject for future research. �

Figure 7. (Color online) Equilibrium Convenience Yield as a Function of Correlation for Different Values of Production
Levels, When Producers Are More Risk Averse (Left) and Less Risk Averse (Right)
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5.4. The Effect of an Existing Hedge from a Previous Cycle
Aside from uneven production levels, another factor that decreases the producers’ tendency to store is an
already undertaken hedging position from a previous production and trading cycle. In this respect, we consider
the situation where a forward contract with maturity T was already issued during the previous cycle, and
assume that producers have already taken a long position on it. We then examine how this existing hedge
affects the spot and forward equilibrium quantities. More precisely, the total position of the producers’ takes
the following form (compare to (1))

¯
w(α, hp)� P0(π0 − α)(1+R)+PT(πT + α(1− ε))+ hp(PT − F)+ h′(PT − F′), (81)

where h′ denotes the position in the forward contract with maturity at time T that was bought with strike
price F′ at the previous cycle. The optimization problem for the producers again has the same form as in (3). In
particular for the model of Subsection 5.1, it takes the form of the following quadratic programming problem:

Πp
� max

hp∈�, α∈[0, π0]
{d1α

2
+d′2α+d3αhp

+d4(hp)2 +d′5hp
+d6}, (82)

where d1, d3, d4 remain the same and are provided by (A.5), while

d′2 �
2(1+R)π0 − (1− ε)(2πT + h′) − (R + ε)µ

m
− γp(1− ε)(πT + h′)�ar[PT]

d′5 �−
(
F −

µ− πT

m

)
− γp(πT + h′)�ar[PT].

We observe that an existing long position in the forward contract, i.e., h′ > 0, has the same impact as an
increase of future production πT . Therefore, as in Figure 3, positive h′ implies less storage and hence lower
spot equilibrium price. In addition, as in Figure 7, when producers have already hedged some of their risk,
the convenience yield increases, a fact that reflects better inventory management. Similarly, and as expected, a
gradual hedging effectively serves to stabilize commodity prices (see Figure 4): The tendency to increase spot
prices by forward contracts is gradually applied to prices. Intuitively, when producers hedge the future price
uncertainty by rolling their position in the forward contract, the effect on the spot prices is spread through
time. Note, however, that an intimate analysis on the gradually optimal hedging requires a dynamic version of
our equilibrium model. This is left open for future research.
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Appendix A. Proofs of Section 5
Proof of Proposition 5.1. The model with dynamics (67) fits the framework of Section 4 by considering a two-dimensional
Brownian motion Z whose characteristic triplet has the form

b �

(
b1
0

)
, c �

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
and ν ≡ 0, (A.1)

where b ∈ �, σ1 , σ2 ∈ �+ and ρ ∈ [−1, 1], while the vectors u1 , u2 ∈ �2 have the form

u1 �

(
1
0

)
and u2 �

(
0
1

)
. (A.2)

The cumulant generating functions of Y1 � 〈u1 ,Z1〉 and X1 � 〈u2 ,Z1〉 are given by

κ1(v)� vb1 +
v2σ2

1

2 and κ2(v)�
v2σ2

2

2 . (A.3)
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The set UZ equals �2, thus Assumption (Ɛ
) and (35) are trivially satisfied, while the same is true for Assumption (�Ɛ)
since ν ≡ 0. Assumption (�ƆƐ) is also satisfied due to κ2 being quadratic in u. Assumption (��′) is fulfilled since we can
construct a martingale measure under which Z remains a Brownian motion.

Starting with the producers’ side, the optimal hedging and storage positions are determined by Proposition 3.2 and (48),
leading to the following quadratic programming problem:

Πp
� max

hp∈�, α∈[0, π0]
{d1α

2
+d2α+d3αhp

+d4(hp)2 +d5hp
+d6}, (A.4)

where

d1 �−
(

1+R + (1− ε)2
m

+
γp(1− ε)2

2 �ar[PT]
)
, d2 �

2(1+R)π0 − 2(1− ε)πT − (R + ε)µ
m

− γp(1− ε)πT �ar[PT],

d3 �−
1− ε

m
− γp(1− ε)�ar[PT], d4 �−

γp

2 �ar[PT], d5 �−
(
F −

µ− πT

m

)
− γpπT �ar[PT]. (A.5)

The first order conditions yield the following solutions:

hp ,∗
�−αd3 +d5

2d4
and α∗ �

d3d5 − 2d2d4

4d1d4 −d2
3
. (A.6)

Therefore, the optimal strategy (α̂, ĥp) ∈ [0, π0] ×� for the producers’ problem is provided by

α̂ � (α∗ ∨ 0) ∧ π0 and ĥp
�− α̂d3 +d5

2d4
. (A.7)

Next, we turn to the investors’ problem and follow the strategy outlined in Subsection 4.2. The cumulant generating
function of Z under � s is provided by

κs (v)� 〈v − ξ, b〉 + 〈v − ξ, c(v − ξ)〉2 , (A.8)

where ξ �−(γs hs/m)u2. In particular, the characteristics of Y under � s are

bs
1 � b1 − ρσ1σ2

γs hs

m
and cs

1 � σ
2
1 . (A.9)

Thus, the characteristics of the exponential transform Ỹ under � s are

b̃s
1 � b1 − ρσ1σ2

γs hs

m
+
σ2

1

2 and c̃s
1 � σ

2
1 . (A.10)

The cumulant generating function of Ỹ simply has the form

κ̃s
1(v)� v

(
b1 − ρσ1σ2

γs hs

m
+
σ2

1

2

)
+

v2σ2
1

2 , (A.11)

and its derivative clearly equals

∂
∂v
κ̃s

1(v)� b1 − ρσ1σ2
γs hs

m
+
σ2

1

2 + vσ2
1 . (A.12)

Therefore, the solution to Equation (58) is

η∗ � ρ
σ2

σ1

γs hs

m
− b1

σ2
1
− 1

2 , (A.13)

and the minimal entropy equals

H(� ∗ | � s )�
T
2 (η

∗σ1)2 �
T
2

(
λ− ρσ2

γs hs

m

)2

. (A.14)

Here λ denotes the “market price of risk” for the asset S, i.e., λ � (µ1 − r)/σ1, with µ1 being the expected rate of return of S
and r the continuously compounded interest rate; we have also denoted that b1 � µ1 − r − σ2

1/2.
The investors’ optimal position in the forward contract is determined by (64), leading to the following quadratic opti-

mization problem:

Πs
� max

hs∈�
{d7(hs)2 +d8hs

+d9}, (A.15)
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where

d7 �−
γs

2 (1− ρ
2)�ar[PT] (A.16)

d8 � Ɛ[PT] − F − λρ
√

T
√
�ar[PT]. (A.17)

Applying the first order conditions once again, we arrive at the optimal position for the investors

ĥs
�

Ɛ[PT] − F
γ̄s �ar[PT]

−
λρ
√

T

γ̄s

√
�ar[PT]

, (A.18)

where γ̄s � γs(1− ρ2). �
Proof of Proposition 5.4. The model with dynamics (76) fits the framework of Section 4 by considering a two-dimensional
Lévy process Z whose characteristic triplet has the form

b �

(
b1
b2

)
, c �

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
and ν(dx1 ,dx2)� λ1{η1 , η2}(dx1 ,dx2), (A.19)

while the vectors u1 , u2 ∈ �2 are provided by (A.2). The cumulant generating function of Y1 � 〈u1 ,Z1〉 and X1 � 〈u2 ,Z1〉 is
given by

κi(v)� vbi +
v2σ2

i

2 + λ(evηi − 1) i � 1, 2. (A.20)

The set UZ equals �2, thus Assumption (Ɛ
) and (35) are trivially satisfied, while the same is true for Assumption (�Ɛ).
Assumption (�ƆƐ) is also satisfied due to κ2 being quadratic in v, while Assumption (��′) is satisfied since we can construct
a martingale measure under which X has finite first moment.

On the producers side, the optimal hedging and storage positions are provided by Proposition 3.2 and (48), leading to
the following optimization problem:

Πp
� max

hp∈�, α∈[0, π0]
f (α, hp) (A.21)

where

f (α, hp) :� d1α
2
+d2α+d3αhp

+d4(hp)2 +d5hp
+d6 + j(α, hp), (A.22)

with

j(α, hp) :�−λ(e−γpη2 l(α, hp ) − 1) T
γp
. (A.23)

The coefficients d1 , . . . ,d5 are provided by (A.5) by replacing �ar[PT] with σ2
2T/m. The first order optimality conditions lead

to the system of non-linear Equations (78), i.e.,
∂
∂α

f (α, hp)� 2d1α+d2 +d3hp
+
λη2T(1− ε)

m
e−γpη2 l(α, hp )

� 0,

∂
∂hp f (α, hp)� d3α+ 2d4hp

+d5 +
λη2T

m
e−γpη2 l(α, hp )

� 0,
(A.24)

and its solution is denoted by (α∗ , hp ,∗), where the relation of α∗ and hp ,∗ is given by the following linear equation:

α∗ �
2(1− ε)d4 −d3

2d1 − (1− ε)d3
hp , ∗

+
(1− ε)d5 −d2

2d1 − (1− ε)d3
.

Therefore, the optimal strategy (α̂, ĥp) ∈ [0, π0] ×� for the producers problem is provided by

α̂ � (α∗ ∨ 0) ∧ π0 and ĥp
� hp ,∗(α̂). (A.25)

We now turn to the investors problem and again follow the strategy of Subsection 4.2. The characteristics of Y under � s
are provided by Lemma 4.2; thus, using (A.19), we get that

bs
1 � b1 − ρσ1σ2ζ+ λη1(e−η2ζ − 1), cs

1 � σ
2
1 , 1E(y) ∗ νs

1 � 1E(〈u1 , x〉)e〈ξ, x〉 ∗ ν, (A.26)

where ζ :� γs hs/m, E ∈B(�) and “∗” denotes integration. Therefore, the cumulant generating function of Y under � s takes
the form

κs
1(v)� vbs

1 +
v2σ2

1

2 + λ(evη1 − 1)e−ζη2 . (A.27)
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Moreover, the characteristics of the exponential transform Ỹ of Y are provided by (54); thus we obtain that

b̃s
1 � κ

s
1(1), c̃s

1 � σ
2
1 , 1E(z) ∗ ν̃s

1 � 1E(ey − 1) ∗ νs
1. (A.28)

Hence, the cumulant generating function of Ỹ under � s equals

κ̃s
1(v)� vb̃s

1 +
v2σ2

1

2 + λe−η2ζ(ev(eη1−1) − 1) (A.29)

and its derivative with respect to v equals

∂
∂v
κ̃s

1(v)� b̃s
1 + vσ2

1 + λe
−η2ζev(eη1−1)(eη1 − 1). (A.30)

The minimal entropy martingale measure is determined by the solution η∗ to the non-linear equation

b̃s
1 + η∗σ

2
1 + λe

−η2ζeη∗(eη1−1)(eη1 − 1)� 0. (A.31)

Then the minimal entropy equals

H(� ∗ | � s )�−
T
γs
κ̃s

1(η∗). (A.32)

Now, putting the pieces together, the investors optimization problem takes the form

Πs
� max

hs
g(hs) (A.33)

where

g(hs) :�− T
γs

{
κ̃s

1(η∗)+ κ2

(
−
γs hs

m

)}
+ hs(Ɛ[PT] − F), (A.34)

and the maximizer is determined by the first order conditions, leading to (79). �

Endnotes
1According to a recent estimation by Barclays Capital, the total commodity-linked assets were around $325 billion at the end of June 2014
(see Barclays Investment Bank 2014 and Henderson et al. [33]).
2 Singleton [56] shows that investors’ index positions in crude oil are highly correlated with crude oil prices, while Buyuksahin and
Robe [10] provide statistical evidence that the excess speculation in U.S. Commodity Futures Markets increased from 11% in 2000 to more
than 40% in 2008. In theoretical terms, this correlation heavily affects the agents’ optimization problems (see among others Caldentey and
Haugh [11]).
3The opinion that speculative forces are the main reason for the booms and busts of commodity prices (especially in oil and gas markets) is
supported by the empirical studies in Henderson et al. [33], Singleton [56], Tang and Xiong [60], while Buyuksahin and Robe [10], Hamilton
and Wu [32], Rouwenhorst and Tang [52], Stoll and Whaley [59] provide statistical tests that support the fundamental economic reasoning
(see also Juvenal and Petrella [39], Kilian and Murphy [44]). For a more detailed literature survey on this debate, see Henderson et al. [33]
and Rouwenhorst and Tang [52].
4We refer to the commodity sellers as producers following the related literature (see e.g., Acharya et al. [1], Baker [6], Rouwenhorst and
Tang [52]). Some authors require that the representative agent of the supply side be the commodity refiners or storage managers who hold
the production and, in some cases, control its supply in the market (see for instance Ekeland et al. [24], Pirrong [49]). In our model, the
production schedule is a given input and the spot revenues of the producers come only from the commodity sales. Thus, our findings
apply directly in case the refiners distribute the commodity in the market.
5As highlighted in Knittel and Pindyck [45], it is difficult to identify whether the long position in the commodity forward contracts is taken
by investors who just want to diversify or by speculators who invest based on specific predictions about the move of commodity prices. In
fact, the holders of a long position in the forward contract can also be called insurers since they undertake some of the producers’ risk.
Without attempting to enter this debate, we will call the producers’ counterparties in the forward contract investors.
6The massive use of derivatives by natural gas and crude oil producers presented in Table 1 of Acharya et al. [1] is clear evidence that
commodity producers are risk averse with regard to their future revenues.
7The significance of the inventory policy in the spot and forward price fluctuations has been highlighted by many authors, see e.g.,
Hamilton [31], Kilian and Murphy [44], Routledge et al. [51], Singleton [56] for detailed discussions and statistical evidence, especially in
the popular example of crude oil prices.
8Here, exogenously means that investors in the commodity forward contract are price takers in the stock market. This implies that the
volume in the commodity forward contracts is not large enough to influence the price of the stock market, an assumption that is supported
by the corresponding market volumes.
9 In Acharya et al. [1] investors are assumed to be risk neutral, but the imposed capital constraints eventually lead to a mean-variance
optimization criterion. In Gorton et al. [30] there is a random supply shock at the terminal time; however, this does not change the general
idea of the equilibrium setting.
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10Continuous time dynamic models with random demand shocks and exogenously given spot prices have been developed in Basak and
Pavlova [8] and Casassus et al. [13].
11The seminal works Stoll [58] and Hirshleifer [35] also include a correlated risky asset in the investors’ set of strategies, forming an
equilibrium framework. However, our results are more general with regard to not only the utility preferences and the stochasticity of the
market model but also the set of investors’ trading strategies.
12The representation by a unique agent is widely used in this literature, see Acharya et al. [1], Basak and Pavlova [8], Ekeland et al. [24],
Gorton et al. [30], Singleton [56] among others.
13This assumption means that the producers control the supply of their commodity only through inventory management and not by
changing their production plans, which can be prohibitively costly in the short term (see also the related comment in Acharya et al. [1]).
14The representation of the storage cost as percentage is common in the related literature, see e.g., Acharya et al. [1] and Gorton et al. [30].
The constant cost rate ε is usually called the depreciation rate.
15The linearity of the demand function is imposed to facilitate the analysis. The limitation of this assumption does not exclude from our
study the main characteristics of the demand, i.e., its elasticity and its random nature at terminal time. Note also that for a short time
horizon a first order approximation of the demand function should suffice (see also the related discussion in Acharya et al. [1], Ekeland
et al. [24]).
16A similar random shift has already been used in the literature, see for example, Pirrong [49].
17 In other words, the investors are price takers when they invest in the financial market.
18 It follows directly from (14) (see also the associated formulas in subsection 5.1), that if the parameter µ is sufficiently small, then producers
may be motivated to discard the commodity, in the sense that the total optimal supply is less than the total production, even if the demand
function is deterministic. We can avoid such cases by assuming that the parameter µ is sufficiently large. Note that µ could be considered
as the consumers’ demand when the commodity has zero price; hence, assuming large values for µ is a reasonable assumption.
19As we will see later, this assumption is needed to guarantee that the commodity spot price PT(α) ∈ L1(�) for at least one � ∈ MG and
α ∈ [0, π0], which eventually implies that the investors’ utility is bounded from above. In the market model of Section 4, this assumption
implies, in particular, that the investor’s indifference price of the commodity is bounded from above; see also Remark 4.6.
20 It is implicitly assumed that the investors’ investment choices are independent of their possible commodity consumption policy. This
assumption has been imposed in the majority of the related literature (cf. Acharya et al. [1], Casassus et al. [13], Ekeland et al. [24],
Hirshleifer [35]) and implies that the consumers or corporations that use the commodity to produce other goods are only a small part of
the investors’ side and that their possible joint optimization problem is negligible when the investors are considered as a whole.
21The fact that dynamic trading of the commodity forward contract is not considered implies that the producers position is counterpart
to the investors position only at the initial and the terminal time for hedging purposes. During the time (0,T), investors may trade in the
forward market and form their representative agent’s position. The focus of our analysis is how the interaction of producers and investors
results in the equilibrium prices at times 0 and T.
22Note that if the expectation of the random term X is large, then producers are encouraged to increase the storage and supply more units
at the terminal time. This speculative move explains how the storage may amplify the effects of a positive shock in demand that increases
the spot price.
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