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We consider two risk-averse financial agents who negotiate the price of

an illiquid indivisible contingent claim in an incomplete semimartingale market

environment. Under the assumption that the agents are exponential utility

maximizers with non-traded random endowments, we provide necessary and

sufficient conditions for the negotiation to be successful, i.e., for the trade to

occur. We, also, study the asymptotic case where the size of the claim is small

compared to the random endowments and give a full characterization in this

case. We, then, study a partial-equilibrium problem for a bundle of divisible

claims and establish its existence and uniqueness. A number of technical

results on conditional indifference prices are provided. Finally, we generalize

the notion of partial-equilibrium pricing in the case where the agents’ risk

preferences are modelled by convex capital requirements.
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Chapter 1

Introduction

In an ideal complete market, each contingent claim payoff can be per-

fectly replicated by dynamic trading in the market assets. Thus, any rational

financial agent is indifferent between the (random) claim itself and its (de-

terministic) replication price (i.e., its unique arbitrage-free price). Abundant

empirical evidence, however, shows that the real financial markets are far from

complete; only a small portion of contingent claims payoffs can be replicated

in the market to a satisfactory degree and some unavoidable risk is present.

A non-specific abstract notion of rationality is no longer sufficient to single

out a unique “fair price” of any contingent claim. Instead, any agent’s valua-

tion and hedging strategy for non-replicable claims should depend on her risk

preferences and her current investment positions.

The fact that there is no single arbitrage-free price for any non-replicable

claim can be exhibited in the over-the-counter transactions where, typically,

two agents negotiate the price of a single, indivisible, non-replicable, contin-

gent claim. The final outcome of such a negotiation eventually hinges upon

three idiosyncratic factors; the agents’ attitudes towards risk, their initial ran-

dom endowments and their negotiation skills. This thesis focuses on the first
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two. In particular we ask the following question:

Under what conditions on the claim whose price is being negotiated, the

liquid-market environment and the agents’ risk attitudes will a mutually

beneficial agreement be feasible?

In the fist part of this text (Chapters 2-4), whose main source is [4],

we model agents’ risk preferences by assuming that agents are expected utility

function maximizers in the von Neumann-Morgenstern sense, with a common

investment horizon T > 0. For simplicity and analytic tractability we suppose

that both agents’ utility functions are exponential, possibly with different risk-

aversion parameters. In the second part (Chapter 5), we assume that agents’

risk measurements, and hence their contingent claim valuations, are obtained

using the general notion of a convex risk measure (also called convex capital

requirement). Roughly speaking, a convex risk measure (defined in [36]; see

also a short survey in the Appendix B), is a map from the set of possible

investment payoffs to the real line, whose aim is to quantify the risk involved

to any payoff.

Another important feature in our setting, which is not present in a ma-

jor part of the past work on the subject, are the agents’ random endowments .

The agents are assumed to hold a portfolio -their initial risk exposure- and

the risk assessment of any contingent claim will depend heavily upon its (co-)

relation with this portfolio. Generally, we use the term random endowment to
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refer to the discounted accumulated wealth of all investments with maturity

up to time T , undertaken by an agent at the initial time t = 0.

In addition to the illiquid random endowments, both agents have access

to a liquid incomplete financial market modelled by a general locally-bounded

semimartingale. As in the case of the random endowment, we assume that the

prices of the market assets and all payoffs are already discounted; this means

that we can freely compare values corresponding to different points in time.

As a discount factor, we use a fixed traded asset, usually called the numéraire

security .

Mathematical-finance literature abounds with information on the utility-

maximization problem for a variety of utility concepts (see, for instance, [24],

[54], [55], [58], [65], [66], [70], [77]). In locally-bounded semimartingale market

models the problem of utility maximization and in particular the necessary

and sufficient conditions for the existence of an optimal trading strategy for

utility functions defined on positive real line have been established in [58] and

further analyzed under the presence of random endowment in [24] and in [49].

The corresponding studies for utilities defined on the whole real line have been

given in [70], and in [65] under random endowment. The special case of an

exponential utility function in semimartingale markets has been extensively

analyzed in [29], [53], [57] and [62].

Given the utility maximization problem, the notion of an acceptable

investment is quite natural. An investment position is called acceptable if

the addition of its payoff to the agent’s random endowment results in higher
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maximized utility. This acceptance criterion induces the notion of utility in-

difference pricing . More precisely, the writer’s (buyer’s) indifference price of a

contingent claim with payoff B is the minimum (maximum) amount of money

v, such that v−B (B− v) is an acceptable investment position. Equivalently,

the indifference price is the amount of money that makes an agent indiffer-

ent - in the sense of utility maximization - between selling (buying) the claim

at price v and foregoing the transaction. This scenario induces a subjective

pricing mechanism for each agent according to which she states her ask and

bid prices for each contingent claim. The idea of indifference pricing under

the utility maximization scheme was introduced in the mathematical finance

literature in [47] and then extensively developed in a variety of directions. In

mathematical terms, the problem of utility indifference pricing is similar to

the study of utility maximization under random endowment, in the sense that

one can always think of a claim payoff as (additional) random endowment (see

among others [29], [47], [49], [57] and [66]).

If the presence of illiquid random endowment in agent’s portfolio is

assumed, we call the indifference price conditional (also called relative indif-

ference price in [64] and [73]) to indicate the strong dependence of the price on

the random endowment. In the exponential world, some of its properties can

be obtained by a simple change of measure which, effectively, removes the con-

ditionality. Other properties, however, cannot be dealt with in that manner.

In Chapter 2, we establish certain properties of conditional indifference prices

in a general semimartingale market setting. We show, for instance, a rather
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unexpected fact that conditional indifference prices (unlike their unconditional

versions) do not have to be monotone in the risk-aversion parameter.

Under the conditions described above, the two agents meet at time 0

when one of the agents (the seller) offers a contingent claim with time-T payoff

B to the other one (the buyer) in exchange for a lump-sum payment p at time

t = 0. Our central question, posed above, can now be made more precise and

split into two separate components:

1. Is there a number p ∈ R such that the exchange of the contingent claim

B for a lump sum p is (strictly) acceptable for both agents?

2. If more than one such p exists, can we determine the exact outcome of

the negotiation?

In the case when the answer to question 1. is positive, we say that the agents

are in agreement. In Chapter 3, we give a fairly complete answer to question 1.,

in terms of random endowments, while we only touch upon the issues involved

in question 2. In fact, it is not possible to give a definitive answer to this

question without a precise model of the negotiation process (see, for instance,

[12] for an overview on modelling background and [3] for a proposed scenario).

A partial answer is possible, however, when the indivisibility assumption is

dropped (see Chapter 4).

It is, perhaps, surprising that unless non-replicable random endowments

are present, no contingent claims will lead to agreement, even for agents with
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very different risk-aversion coefficients. When the random endowments are

indeed present, we give a necessary and sufficient condition for the set of

mutually agreeable claims to be larger that the set of replicable ones. This

characterization is closely related to the notion of optimal risk sharing, which

was first studied in the context of insurance/reinsurance negotiation (see, for

instance, [14], [17] and [26]) and in terms of the principal’s problem (see, for

instance, [48]) and recently developed in more general settings (see , [9], [10],

[35], [37] and [52]).

An affirmative answer to the question 1. leads to the following problem:

is there a criterion for an agreement about a given claim B? We propose two

approaches: one through the notion of residual risk and the other based on

asymptotic approximation of conditional indifference prices for small quanti-

ties.

The residual risk (introduced in [63]) of a random liability is defined as

the difference between the liability’s payoff and the terminal value of the opti-

mal risk-monitoring strategy at maturity. We establish the following criterion,

made precise in the body of the text (see Section 3.4): a claim is mutually

agreeable if and only if it reduces the expected sum of the agents’ residual

risks under some equivalent martingale measure.

The other approach provides an explicit criterion in the asymptotic case

when the size of the contingent claim B is small compared to the size of the

agents’ random endowments. It is possible to phrase the agreement problem

in terms of a relationship between the buyer’s and the seller’s conditional in-
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difference price for the claim, so it is not unusual that an asymptotic study of

these quantities plays a major role. More precisely, we provide a rather general

Taylor-type approximation of the conditional exponential indifference price for

locally bounded semimartingales on continuous filtrations. These approxima-

tions are then used to give simple asymptotic criteria for agreeability, as well

as the asymptotic size of the interval of mutually-agreeable prices. Since it is

not possible to obtain closed-form representations of indifference prices in gen-

eral market models, such asymptotic results can be very useful even beyond

the agreement problem.

Asymptotic techniques are not new in utility maximization problems.

Results on the second order approximation of the indifference price for the ex-

ponential and the power utility, in a market with Brownian motion dynamics,

are given in [44] (see also [46]). These results are generalized in [59] for semi-

martingale markets and general utility functions defined on the positive real

line. However, the arguments presented there do not cover the case of the ex-

ponential utility (e.g., the situation when the optimal wealth is not necessarily

bounded from below by zero). For the exponential utility in a semimartingale

market, the first derivative of the indifference price for a vector of claims is

given in [51]. By imposing the assumption of continuity on the filtration, we

generalize their result (as well as the asymptotic approximation in [72]) by

providing a second order approximation of the price for a vector of claims.

In the case where the agents are allowed to negotiate not only the price

of the claim, but also the number of units traded, the classic market clearing
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conditions can be used to compute these two quantities. More precisely, for a

given vector of claims, we define the utility-based demand function for both

agents. Roughly speaking, the demand function at a price p is the number

of units of the given vector of claims that the agent is willing to buy at price

p, where “willing” refers to the utility maximization criterion. Then we call

a price p, partial equilibrium price if the sum of demand functions at p is

zero. Furthermore, the (vector) quantity of the claims that is to be traded

between the agents at equilibrium price p is called partial equilibrium quan-

tity. In Chapter 4, we state the precise definition and we prove existence and

uniqueness, as well as a formula of the partial equilibrium price.

The existence results of various types of competitive equilibria are a

staple of quantitative economics literature, and have recently made their way

into mathematical finance (see, among others, [18], [25], [34], [43] and [78]).

The incomplete partial-equilibrium setting presented herein, however, new and

not covered by any of the existing results. As we already mentioned above,

it is only in the present setting that we can say something about question 2.,

i.e., about the realized price p of the offered contingent claim B.

In Chapter 5, we assume that the agents’ attitudes towards risk are

modelled by convex capital requirements which can be understood as a gener-

alization of the acceptance criterion induced by the utility maximization. The

notion of capital requirement or risk measure was introduced in mathematical

finance literature in late nineties and since then it has captured a large part

of the research activity in this field. For a short introduction to this field and
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a list of related references we refer the reader to Appendix B.

In our general semimartingale financial market, we fix a time horizon

T > 0 and we endow each agent with an acceptance set, i.e., the set of all

investment positions with maturity T that the agent is willing to undertake

at time 0. These acceptance sets incorporate agents’ risk preferences and

satisfy certain rationality properties such as monotonicity and convexity. In

the same fashion as in the case of indifference pricing, each agent’s acceptance

set induces a subjective pricing mechanism called convex risk measure. Having

introduced these new concepts, we suppose the existence of I ≥ 2 agents with

common time horizon T , who wish to trade a vector of contingent claims with

maturity at T . We then generalize the notion of mutually agreeable claims by

considering a vector of claims instead of a single one and by including more

than two agents. A number of properties of the set of agreeable claims are

exhibited.

The notions of demand function and partial equilibrium pricing are

similarly generalized in this setting: given a vector of claims, each agent’s

demand function maps price vectors to the units of claims that minimize the

risk measure of the corresponding position. Then, the partial equilibrium price

is the price vector at which the sum of agents’ demand functions is zero and the

partial equilibrium allocation is the corresponding allocation. We use the term

“allocation” in this setting instead of “quantity” to emphasize the possibility

of the participation of more than two agents. In Chapter 5, we impose the

necessary assumptions which lead to an existence and uniqueness result and
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we discuss these findings.

The chapters are organized in the following way: In Chapter 2, we

first describe the market model and introduce necessary notation and we state

some properties of the conditional indifference prices, together with some new

results on their unconditional versions. We also include the second order ap-

proximation of the conditional price. The notion of agreement is introduced

and analyzed in Chapter 3, where its connection with the agents’ residual risk

and the price approximation is also discussed. The topics of Chapter 4 are the

definition, the existence and the uniqueness of the partial equilibrium price-

quantity for a vector of contingent claims. The generalized notions of agents’

agreement and partial equilibrium price-allocation are introduced and devel-

oped in Chapter 5, where the corresponding result of existence and uniqueness

is proven. In Appendix A, we state the definition and the main properties of

the dynamic version of the conditional indifference prices. Separate sections

are devoted to the residual risk process and the definition of the class of mar-

tingale, called BMO-martingales. Finally, in Appendix B, we present a short

review of the theory of convex risk measures, where we focus on the definitions

and results mentioned in Chapter 5.

To facilitate the exposition, we list the notation and the keywords men-

tioned throughout the text in the Index.
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Chapter 2

Utility Conditional Indifference Prices

This chapter is dedicated to the description of the market model and

the study of the conditional indifference price. Throughout the text, we adopt

the general framework of a locally-bounded semimartingale market (see [31]

for a detailed overview) and the exponential utility set up of [29] and [62].

In Section 2.1, we include the necessary notation, describe the utility

maximization problem and recall some well-known related results. The natu-

rally raised feature of the utility-based acceptance set is, then, introduced and

a number of its properties are proven.

The main object of Section 2.2 is the conditional indifference price.

As mentioned in the Introduction, the utility indifference price of a contin-

gent claim B is the price that makes a utility maximizer indifferent between

selling/buying the claim and omitting the transaction. The large majority

of the existed literature on this field does not include the case where the

agent has a random endowment in her portfolio. If a random endowment is

present in agent’s portfolio, the indifference price is called conditional. Results

on this notion are presented in Section 2.2, where their differences with the

corresponding results on the unconditional version are highlighted. For this
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analysis, we use an equivalence relation between payoffs; two random payoffs

are equivalent (with respect to risk) if their difference is a replicable claim.

The part of the unhedgeable risk left to agent’s portfolio after under-

taking any non-replicable investment is usually called residual risk. In Section

2.3, we state its definition and we provide straightforward results in its writer’s

and buyer’s indifference price.

Finally, in Section 2.4, under the assumption of continuous filtrations,

we compute the second derivative of the conditional indifference price in the

units of the claims. Then, we use this result to provide a rather general second

order approximation of the price of a vector of contingent claims.

2.1 Market Model and Preliminary Results

In this section, we introduce the model of investment and the agents’

characteristics, that is, their utility functions, random endowments, admissible

strategies and indifference prices. A number of notations used in the following

chapters is, also, introduced.

2.1.1 The traded assets and the agents

The financial market model is based on a filtered probability space

(Ω,F,F,P), F = (Ft)t∈[0,T ], T > 0, which satisfies the “usual conditions”

of right-continuity and augmentation by P−negligible sets. There are d + 1

traded assets (d ∈ N), whose discounted price processes are modelled by

an Rd+1−valued locally bounded semimartingale process (S
(0)
t ; St)t∈[0,T ] =

12



(S
(0)
t ;S

(1)
t , . . . , S

(d)
t )t∈[0,T ]. The first asset, S

(0)
t , plays the role of a numéraire

security or a discount factor. Operationally, we simply set S
(0)
t ≡ 1, for all

t ∈ [0, T ], P−a.s..

We place ourselves in the von Neumann-Morgenstern framework (see

[75]) and we assume that each market participant evaluates the risk of an

uncertain position X at time T according to the expected utility EP[U(X+E)],

where U is a utility function, E is the random endowment (accumulated illiquid

wealth) and P is the subjective probability measure. For technical reasons, we

restrict our attention to E ∈ L∞ (where L∞ stands for the set L∞(Ω,F,P))

and the class of exponential utilities

U(x) = − exp(−γx), x ∈ R,

where the constant γ ∈ (0,∞) is the (absolute) risk aversion coefficient.

An agent invests in the market by choosing a portfolio strategy ϑ in

an admissibility class Θ, to be specified below. The resulting gains process

(Xϑ
t )t∈[0,T ] is the stochastic integral Xϑ

t = (ϑ ·S)t =
∫ t

0
ϑu dSu. For the choice

of set of admissible strategies, we follow the setup introduced in [62] (see also

[29]).

Before we give a precise description of the aforementioned set Θ, we

need to introduce several concepts related to the no-arbitrage requirement.

We start with the sets Ma and Me of absolutely continuous and equivalent

local martingale measures, i.e.,

Ma = {Q� P : S is a local martingale under Q}

13



and

Me = {Q ≈ P : S is a local martingale under Q} .

For a probability measure Q on (Ω,F), we define

H(Q|P) =

{
EP [dQ

dP ln
(
dQ
dP

)]
Q� P,

+∞ otherwise.

The (extended) positive number H(Q|P) is called the relative entropy of the

probability measure Q with respect to probability measure P. It is well-known

that for every absolutely continuous probability measure Q, H(Q|P) ≥ 0 and

H(Q|P) = 0 if and only if P = Q. Intuitively, the function H(·|P) can be used

to measure how “close” to P a probability measure Q is. For further details

on the notion of relative entropy we refer the interested reader to [42] or [39].

We also set

Me,f = {Q ∈Me : H(Q|P) <∞}

and enforce the following assumption.

Assumption 2.1.1. Me,f 6= ∅.

Assumption 2.1.1 trivially implies that Me 6= ∅ which, in turn, guar-

antees that no arbitrage opportunities exist in the market. In fact, a stronger

statement of “no free lunch with vanishing risk” will also hold, as proved in

[30], Corollary 1.2. The additional requirement in Assumption 2.1.1 is com-

mon in the literature and ensures that the choice of the exponential function

14



for the utility leads to a well-defined behavior for utility-maximizing agents

(see, among others, [39] and [29]).

We remind the reader that L0(F) denotes the set of all (P−a.s. equiva-

lent classes of) F−measurable random variables. In the sequel, the expectation

operator under a probability measure Q is denoted by EQ[·], where the super-

script Q is omitted in the case of the (subjective) measure P. Also, for a

random variable B ∈ L0(F) with E[exp(B)] < ∞, we define the probability

measure PB, through its Radon-Nikodym derivative with respect to P by

dPB
dP

=
eB

E[eB]
.

Furthermore, Q(0) denotes the probability measure in Ma with the minimal

relative entropy with respect to P, i.e., the probability measure for which

H(Q(0)|P) ≤ H(Q|P), for all Q ∈Ma. It is a consequence of Assumption 2.1.1

that the probability measureQ(0) exists, is unique and belongs to Me,f (see [39],

Theorem 2.2). Similarly, for every B such that E[exp(B)] < ∞, there exists

a unique probability measure Q(B) ∈ Ma such that H(Q(B)|PB) ≤ H(Q|PB),

for all Q ∈Ma (see [29], page 103).

Having introduced the required families of probability measures, we

turn back to definition of the class Θ of admissible strategies

Θ = {ϑ ∈ L (S) : (ϑ · S) is a Q−martingale, ∀Q ∈Me,f} (2.1.1)

where L(S) is the set of all predictable (d + 1)−dimensional S−integrable

processes on [0, T ]. More information about the set Θ of admissible strategies

is given in [62] (see also remarks on the set Θ2 in [29], page 104).
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A random variable B ∈ L0(F) is said to be replicable if there exists

a constant c and an admissible strategy ϑ ∈ Θ such that B = c + (ϑ · S)T ,

P−a.s.; the set of replicable random variables will be denoted by R0. More

generally, we introduce the following equivalence relation between random vari-

ables in L0(F).

Definition 2.1.2. We call two random variables B,C ∈ L0(F) risk equivalent

or equal up to replicability and write B ∼ C, if the difference B−C is replicable.

It is clear that the relation ∼ is an equivalence relation on L0(F) (since

Θ is a vector space). We note that the zero equivalence class coincides with

the set R0 of the replicable random variables. For future reference, we let

R∞ = R0 ∩ L∞ denote the set of all (essentially) bounded replicable random

variables.

2.1.2 Utility maximization and indifference pricing

Given their risk profiles, financial agents trade in the financial market

with the goal of maximizing their expected utility. More precisely, an agent

with initial wealth x ∈ R, risk-aversion coefficient γ and random endowment

E ∈ L∞ will choose a portfolio process ϑ ∈ Θ so as to maximize the expected

utility E[− exp(−γ(x + (ϑ · S)T + E))]. The value function uγ(x|E) of the

corresponding optimization problem is given by

uγ(x|E) = sup
ϑ∈Θ

E
[
− exp

(
−γ
(
x+ (ϑ · S)T + E

)) ]
, x ∈ R. (2.1.2)
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Overloading the notation slightly, for any random variable B ∈ L∞ (inter-

preted as a contingent payoff with maturity T ) we define the indirect utility of

B by uγ(B|E) = uγ(0|E +B), i.e.,

uγ(B|E) = sup
ϑ∈Θ

E
[
− exp(−γ ((ϑ · S)T + E +B))

]
. (2.1.3)

Remark 2.1.3. It was proved in [29], Theorem 2.2 (see also [53], Theorem

2.1 and Theorem 2.2.4 below) that the maximums in (2.1.2) and (2.1.3) are

attained.

The indirect utility uγ(·|E) induces an acceptance set , denoted by Aγ(E).

More precisely, we define

Aγ(E) = {B ∈ L∞ : uγ(0|E) ≤ uγ(B|E)} . (2.1.4)

Intuitively, Aγ(E) contains all the claims with maturity up to T that the agent

with random endowment E and risk aversion γ accepts to undertake at time

t = 0. Similarly, we define the set A◦γ(E) = {B ∈ L∞ : uγ(0|E) < uγ(B|E)},

which is called the agent’s strict acceptance set .

It is a consequence of the choice of the exponential utility function that

the addition of any constant initial wealth x ∈ R to the random endowment E

does not influence the acceptance sets Aγ(E) and A◦γ(E). More generally, we

have the following proposition. We remind the reader that a set A is called

monotone if B ≥ C, P−a.s. and C ∈ A imply B ∈ A.

Proposition 2.1.4. For every E ∈ L∞ and γ ∈ (0,∞), the sets Aγ(E) and

A◦γ(E) are convex, monotone and for every E1,E2 ∈ L∞

E1 ∼ E2 implies Aγ(E1) = Aγ(E2) and A◦γ(E1) = A◦γ(E2) (2.1.5)
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Proof. We prove the arguments for Aγ(E) since the proof is the same for A◦γ(E).

Consider B1, B2 ∈ Aγ(E) and λ ∈ [0, 1]. If ϑ1,ϑ2 ∈ Θ are the maximiz-

ers of (2.1.3) for B = B1 and B = B2 respectively (see Theorem 2.2.4 for the

existence of ϑ1 and ϑ2), the concavity property of the utility function yields

that

uγ(λB1 + (1− λ)B2|E) ≥ E[U(λB1 + (1− λ)B2 + λϑ1 + (1− λ)ϑ2 + E)]

≥ λuγ(B1|E) + (1− λ)uγ(B2|E) ≥ uγ(0|E)

which implies the convexity of Aγ(E).

Let C ∈ L∞ and suppose that B1 ≤ C, P−a.s. Then by the mono-

tonicity of the utility function we have

uγ(C|E) ≥ E[U(C + ϑ1 + E)] ≥ uγ(B1|E) ≥ uγ(0|E)

i.e., C ∈ Aγ(E).

Finally, E1 ∼ E2 means that there exist k ∈ R and ϑ̂ ∈ Θ such that

E1 − E2 = k + (ϑ̂ · S)T . Hence,

uγ(B|E1) = sup
ϑ∈Θ

E
[
− exp

(
−γ
(

(ϑ · S)T + E2 + k +
(
ϑ̂ · S

)
T

+B
)) ]

= e−γk sup
ϑ∈Θ

E
[
− exp (−γ ((ϑ · S)T + E2 +B))

]
= e−γkuγ(B|E2),

for every B ∈ L∞. This implies that B ∈ Aγ(E1) if and only if e−γkuγ(B|E2) ≥

e−γkuγ(0|E2), i.e., if and only if B ∈ Aγ(E2).
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The acceptance set Aγ(E) can be used to introduce the notion of a

conditional indifference price. The conditional writer’s indifference price,

ν(w)(B; γ|E) of the contingent claim B ∈ L∞ is defined by

ν(w)(B; γ|E) = inf {p ∈ R : p−B ∈ Aγ(E)} , (2.1.6)

i.e., ν(w)(B; γ|E) is the minimum amount of money at which the agent with

risk aversion coefficient γ and random endowment E is willing to sell a claim

with payoff B.

It follows directly from (2.1.6) that ν(w)(B; γ|E) satisfies the equation

uγ(ν
(w)(B; γ|E)−B|E) = uγ(0|E).

In analogy, the conditional buyer’s indifference price ν(b)(B; γ|E) is de-

fined by

ν(b)(B; γ|E) = sup {p ∈ R : B − p ∈ Aγ(E)} , (2.1.7)

i.e., ν(b)(B; γ|E) is the maximum amount of money at which the agent, with risk

aversion coefficient γ and random endowment E, is willing to buy a contingent

claim with payoff B. Similarly to the writer’s case, ν(b)(B; γ|E) satisfies the

equation

uγ(B − ν(b)(B; γ|E)|E) = uγ(0|E).

In the special case where E ∼ 0, the corresponding prices are called

unconditional indifference prices (or, simply, indifference prices) and denoted

by ν(w) (B; γ) and ν(b) (B; γ).
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The notion of the indifference price has been studied by many authors

(see, among others, [44], [47], [63] and [69]). The definition of the conditional

indifference price under exponential utility was given in [13] for general semi-

martingale model, in [64] for a binomial case model and in [73] for a diffusion

model (where the price is called relative indifference price). A discussion of the

conditional indifference price under general utility functions is given in [66].

2.2 Results on the Conditional Indifference Price

The subject of this section is the conditional indifference price and its

properties. The results stated below are not only very useful for our analysis

on the mutually agreeability and the partial equilibrium, but they may also be

seen as interesting in their own right since they describe some of the aspects

of indifference valuation under the presence of random endowment. Some new

results about the unconditional indifference price (see Lemma 2.2.9, Proposi-

tions 2.2.12, 2.2.13 and 2.2.16), as well as several generalizations of existing

results in the case of the conditional price (see Theorem 2.2.4, Propositions

2.2.7 and 2.2.15) are exhibited.

We start with some basic properties of the indifference prices whose

proof is straightforward from the Definitions 2.1.6 and 2.1.7.

Proposition 2.2.1. For every B,E,E′ ∈ L∞ and γ ∈ (0,∞), it holds that

1. ν(b)(B; γ|E) = −ν(w)(−B; γ|E), for B,E ∈ L∞.
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2. When E ∈ R∞ (in particular, when E is constant) ν(w)(·; γ|E) and ν(b)(·; γ|E)

coincide with their unconditional versions ν(w) (·; γ) and ν(b) (·; γ).

3. More generally, we have ν(w)(·; γ|E) = ν(w)(·; γ|E′) and ν(b)(·; γ|E) =

ν(b)(·; γ|E′) as soon as E ∼ E′.

In the case where E � 0, there are two ways to write the conditional

indifference price in terms of an unconditional one. This is shown in the

following proposition.

Proposition 2.2.2. For every B,E ∈ L∞ and γ ∈ (0,∞), the following

statements are true

1. The conditional indifference prices ν(w)(B; γ|E), ν(b)(B; γ|E) can be writ-

ten as the unconditional indifference prices of B, computed under the

probability measure P−γE.

2. Moreover, ν(w)(B; γ|E) = ν(w) (B − E; γ)− ν(w) (−E; γ)

and ν(b)(B; γ|E) = ν(b) (B + E; γ)− ν(b) (E; γ).

Proof. It follows from the definition of the indifference price that ν(w)(B; γ|E)

solves the equation

e−γν
(w)(B;γ|E)uγ(−B|E) = uγ(0|E). (2.2.1)
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We also have that, for every B ∈ L∞,

uγ(−B|E) = sup
ϑ∈Θ

E
[
− exp(−γ ((ϑ · S)T + E−B))

]
= sup

ϑ∈Θ
E
[

exp(−γE) (− exp(−γ ((ϑ · S)T −B)))
]

= E[exp(−γE)]sup
ϑ∈Θ

EP−γE

[
(− exp(−γ ((ϑ · S)T −B)))

]
.

Taking (2.2.1) into account, we get that the indifference price solves

e−γν
(w)(B;γ|E)sup

ϑ∈Θ
EP−γE

[
(− exp(−γ ((ϑ · S)T −B)))

]
= sup
ϑ∈Θ

EP−γE

[
(− exp(−γ ((ϑ · S)T )))

]
,

which completes the proof of part 1 (the case of the buyer’s price is similar).

For part 2, we refer the reader to [13], page 21.

Below, we state an example of a market model that will be used in the

sequel.

Example 2.2.3. This example is set in an incomplete financial market similar

to the one considered in [63] (see, also, [44]). The market consists of one risky

asset S = (St)t∈[0,T ] with dynamics

dSt = St
(
µ(t) dt+ σ(t) dW

(1)
t

)
,

and an additional (non-traded) factor Y = (Yt)t∈[0,T ], which evolves is a unique

strong solution of

dYt = b(Yt, t) dt+ a(Yt, t)
(
ρdW

(1)
t + ρ′dW

(2)
t

)
,
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where W (1) = (W
(1)
t )t∈[0,T ] and W (2) = (W

(2)
t )t∈[0,T ] are two standard indepen-

dent Brownian Motions, defined on a probability space (Ω,F, (Ft)t∈[0,T ],P).

The constant ρ ∈ (−1, 1) is the correlation coefficient and ρ′ =
√

1− ρ2.

We assume that the deterministic functions µ, σ : [0, T ] → R are uniformly

bounded (σ > 0).

By Theorem 3 in [63] (in [63] µ and σ are constants, but the arguments

carry over to this setting too), we have that

ν(w) (B; γ) =
1

γ (1− ρ2)
ln
{
EQ(0)

[
eγ(1−ρ2)B

]}
, (2.2.2)

for any payoff B ∈ L∞, such that B = g(YT ) for some bounded Borel function

g : R→ R, where the Radon-Nikodym derivative of Q(0) is given by

dQ(0)

dP
= exp

(
−
∫ T

0

1

2
λ2(t)dt−

∫ T

0

λ(t)dW
(1)
t

)
,

and λ(t) = µ(t)
σ(t)

is the Sharpe ratio of S.

It is a direct consequence of (2.2.2) and of part 2 of Proposition 2.2.2

that, for every random endowment E ∈ L∞ such that E = q(YT ) for some

bounded Borel function q : R→ R, we get that

ν(w) (B; γ|E) =
1

γ (1− ρ2)
ln

E
Q(0)
[
eγ(1−ρ2)(B−E)

]
EQ(0) [e−γ(1−ρ2)E]

 . (2.2.3)

Given Proposition 2.2.2, we can generalize some well-known results on

unconditional indifference prices to include the case of random endowment.

Indeed, first we give the so-called robust representation of the indifference

price, stated in the following Theorem, which is a variation of Theorem 2.2 in

[29] and Theorem 2.1 in [53] (we use the notation L1 for the set L1(Ω,F,P)).
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Theorem 2.2.4. ([29], [53])

For B ∈ L∞, we have

ν(w)(B; γ|E) = sup
Q∈Ma

{
EQ[B]− 1

γ
h−γE(Q)

}
, (2.2.4)

where, for C ∈ L∞, we define the map hC : L1 7→ [0,+∞] as

hC(Q) =

{
H(Q|PC)−H(Q(C)|PC) when Q ∈Ma,

+∞ otherwise.

The supremum in (2.2.4) is uniquely attained by the measure Q(−γE+γB), which

belongs in Me,f and its Radon-Nikodym derivative with respect to P−γE+γB can

be written as

dQ(−γE+γB)

dP−γE+γB

= ke(−γϑ(−γE+γB)·S)T , (2.2.5)

where ϑ(−γE+γB) ∈ Θ is the maximizer of the control problem associated with

the value function uγ(−B|E) and k ∈ R is the normalization constant.

Corollary 2.2.5. The mappings B 7→ ν(w)(B; γ|E) and B 7→ ν(b)(B; γ|E)

are, respectively, lower and upper semi-continuous with respect to the weak-*

topology σ(L∞,L1).

Proof. It suffices to note that (2.2.4) represents ν(w)(·; γ|E) as a supremum of

σ(L∞,L1)−continuous and linear functionals on L∞.

Another direct consequence of the representation formula (2.2.4) is the

following proposition.
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Proposition 2.2.6. The mappings B 7→ ν(w)(−B; γ|E) and B 7→ −ν(b)(B; γ|E)

are convex, decreasing and replication invariant, that is

ν(w)(B + (ϑ · S)T ; γ|E) = ν(w)(B; γ|E), for all ϑ ∈ Θ.

The function h−γE(·) in Theorem 2.2.4 is sometimes called the penalty

function for the indifference price ν(w)(·; γ|E), and is convex. It is in fact

strictly convex on its effective domain Me,f ; we remind the reader that the

effective domain of a convex function f is the subset of its domain for which

f < +∞. It is well-known (see, e.g., [37], Lemma 3.29) that the conjugate

representation,

E[X logX] = sup
Y ∈L∞

(
E[Y X]− logE[eY ]

)
,

where we use the convention that x log(x) = +∞, for x < 0, is valid for all

X ∈ L1
+, such that E[X] = 1. Using this representation and the natural iden-

tification of finite measures equivalent to P with their Radon-Nikodym deriva-

tives in L1, we can readily establish the following properties of the penalty

function h.

Proposition 2.2.7. For C ∈ L∞, the function hC : L1 7→ [0,+∞] is convex

(strictly on its effective domain) and σ(L1,L∞)−lower semicontinuous.

An immediate corollary of Proposition 2.2.7 and the Hahn-Banach The-

orem in the separation form (see [37] for details on convex analysis and also

[52], Theorem 2.1) is the following result.

25



Proposition 2.2.8. The mapping h−γE is the minimal penalty function for

ν(w)(·; γ|E), i.e.,

h−γE(Q) ≤ h̃(Q), for all Q ∈Ma,

whenever the function h̃ satisfies

ν(w)(B; γ|E) = sup
Q∈Ma

(
EQ[B]− 1

γ
h̃(Q)

)
, for all B ∈ L∞.

Moreover, the dual, conjugate representation

1

γ
h−γE(Q) = sup

B∈L∞

(
EQ[B]− ν(w)(B; γ|E)

)
, ∀Q ∈ L1

holds.

2.2.1 Conditional indifference prices and risk equivalence classes

Using the linearity of the set Θ of the admissible trading strategies and

the properties of the exponential utility, one can deduce that the following

scaling property holds true

αν(w) (B;αγ) = ν(w) (αB; γ) , for B ∈ L∞, γ, α > 0. (2.2.6)

The following Lemma states that the indifference price has a certain subaddi-

tive property, with true additivity holding only in exceptional cases.

Lemma 2.2.9. For B1, B2 ∈ L∞ and γ1, γ2 > 0, let γ̃ > 0 be given by

1

γ̃
=

1

γ1

+
1

γ2

.

Then,
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(a) ν(w) (B1; γ1) + ν(w) (B2; γ2) ≥ ν(w) (B1 +B2; γ̃), and

(b) the following two conditions are equivalent

(1) ν(w) (B1; γ1) + ν(w) (B2; γ2) = ν(w) (B1 +B2; γ̃),

(2) γ1

γ̃
B1 ∼ γ2

γ̃
B2.

Proof.

(a) Using the dual representation (2.2.4), the inequality in (a) above is equiv-

alent to the following inequality

sup
Q∈Ma

(
EQ[B1]− 1

γ1

h(Q)
)

+ sup
Q∈Ma

(
EQ[B2]− 1

γ1

h(Q)
)

≥ sup
Q∈Ma

(
EQ[B1 +B2]− 1

γ̃
h(Q)

)
, (2.2.7)

which easily follows.

(b) (1) ⇒ (2). Equation (1) implies that the equality in (2.2.7) holds. By

the strict convexity of the function h(·) on its effective domain, i.e., on

Me,f , and the scaling property (2.2.6), equality in (2.2.7) in turn implies

the equality of dual minimizers

Q(
γ1
γ̃
B1) = Q(

γ2
γ̃
B2) = Q(B1+B2).

By the representation (2.2.5) of the Radon-Nikodym derivatives of the
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above measures, we get

k1e
(ϑ

(
γ1
γ̃ B1)·S)T e

γ1
γ̃
B1 =

dQ(
γ1
γ̃
B1)

dP γ1
γ̃
B1

dP γ1
γ̃
B1

dP
=
dQ(

γ1
γ̃
B1)

dP

=
dQ(

γ2
γ̃
B2)

dP
=
dQ(

γ2
γ̃
B2)

dP γ2
γ̃
B2

dP γ2
γ̃

dP
= k2e

(ϑ
(
γ2
γ̃ B2)·S)T e

γ2
γ̃
B2 ,

and so γ1

γ̃
B1 − γ2

γ̃
B2 = (ϑ · S)T + k, where k = log(k2) − log(k1) and

ϑ = ϑ(
γ2
γ̃
B2) − ϑ(

γ1
γ̃
B1).

(2)⇒ (1). Conversely, suppose that

γ1

γ̃
B1 −

γ2

γ̃
B2 = (ϑ · S)T + k,

for some k ∈ R and ϑ ∈ Θ. Using the scaling property (2.2.6), the

equality in (1) is equivalent to

1

γ1

ν(w)

(
γ1

γ̃
B1; γ̃

)
+

1

γ2

ν(w)

(
γ2

γ̃
B2; γ̃

)
=

1

γ̃
ν(w) (B1 +B2; γ̃) . (2.2.8)

By the risk equivalence between γ1

γ̃
B1 and γ2

γ̃
B2 and the replication in-

variance of v(w)(·; γ̃), we have

1

γ1

ν(w)

(
γ1

γ̃
B1; γ̃

)
+

1

γ2

ν(w)

(
γ2

γ̃
B2; γ̃

)
=

1

γ1

ν(w)

(
γ1

γ̃B1

; γ̃

)
+

1

γ2

ν(w)

(
γ1

γ̃
B1 + k + (ϑ · S)T ; γ̃

)
=

1

γ̃
ν(w)

(
γ1

γ̃
B1; γ̃

)
+

k

γ2

.

On the other hand,

1

γ̃
ν(w) (B1 +B2; γ̃) =

1

γ̃
ν(w)

(
B1 +

γ1

γ2

B1 +
γ̃

γ2

(k + (ϑ · S)T ); γ̃

)
=

1

γ̃
ν(w)

(
γ1

γ̃
B1; γ̃

)
+
k

γ2

.
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The equality in (2.2.8) now follows directly.

The conjugacy between (affine transformations of) the price functional

ν(w)(·; γ|E) and the penalty function h−γE(·), as displayed in Theorem 2.2.4

and Proposition 2.2.8, yields directly the following auxiliary result.

Lemma 2.2.10. For E, Ẽ ∈ L∞, γ > 0, the following two statements are

equivalent

1. ν(w)(B; γ|E) ≥ ν(w)(B; γ|Ẽ), for all B ∈ L∞

and

2. h−γE(Q) ≤ h−γẼ(Q), for all Q ∈Ma.

We use Lemma 2.2.10 in the proof of the following proposition.

Proposition 2.2.11. For E ∈ L∞ and γ > 0, the following statements are

equivalent

1. ν(w) (B; γ) ≥ ν(w)(B; γ|E), for all B ∈ L∞,

2. ν(w) (B; γ) = ν(w)(B; γ|E), for all B ∈ L∞,

3. E ∈ R∞

and

4. Q(0) = Q(−γE).
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Proof. (4)⇒ (3) As in the proof of implication (1)⇒ (2) in Lemma 2.2.9, we

can use the equation (2.2.5) in Theorem 2.2.4 to show that (4) implies (3).

(3)⇒ (2) Follows immediately from statement (3) in Proposition 2.2.1.

(2)⇒ (1) Clearly, (1) is weaker than (2).

(1)⇒ (4) By Lemma 2.2.10, the equality in (2) implies that h−γE(Q) ≥

h(Q), for all Q ∈Ma, i.e.,

H(Q|P−γE)−H(Q(−γE)|P−γE
) ≥ H(Q|P)−H(Q(0)|P), ∀Q ∈Ma.

In particular, for Q = Q(−γE), we get

H(Q(−γE)|P) ≤ H(Q(0)|P).

Therefore, Q(−γE) = Q(0), by the strict convexity of the relative entropy H(·|P)

on its effective domain.

Considered as convex map from L∞ to R, the indifference price is not

homogeneous. In fact, the homogeneity holds only for replicable claims as the

following proposition states.

Proposition 2.2.12. For B,E ∈ L∞ and γ > 0, the following statements are

equivalent

1. ν(w)(αB; γ|E) = αν(w)(B; γ|E), for some α ∈ R \ {0, 1}

and

2. B ∈ R∞.
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Proof. We assume, for simplicity, that E = 0, otherwise, we simply change of

the underlying probability to P−γE (see, also, Proposition 2.2.2).

(2) ⇒ (1) If B ∈ R∞, then αB ∈ R∞, so (1) follows from the

replication-invariance of ν(w) (·; γ).

(1)⇒ (2) Suppose, first, that (1) holds with α > 0. Then

sup
Q∈Ma

(
EQ[B]− 1

γ
h(Q)

)
= sup

Q∈Ma

(
EQ[B]− 1

αγ
h(Q)

)
,

where h(·) stands for h0(·). The two maximized functions are strictly concave,

ordered and agree only for Q such that h(Q) = 0. Therefore, the equality of

their (attained) suprema forces the relation h(Q(γB)) = h(Q(αγB)) = 0, which,

in turn, implies that Q(γB) = Q(αγB) = Q(0). We can conclude that B ∈ R∞

by using the implication (4)⇒ (3) in Proposition 2.2.11.

It remains to treat the case α < 0. By considering the random variable

|α|B instead of B, it is clear that we can assume without loss of generality of

that α = −1. This in turn yields ν(w) (−B; γ) = −ν(w) (B; γ). Equivalently,

we have

inf
Q∈Ma

(
EQ[B] +

1

γ
h(Q)

)
= sup

Q∈Ma

(
EQ[B]− 1

γ
h(Q)

)
,

which, by positivity of h(·), implies that h(Q(γB)) = 0. We continue as above

to conclude that B ∈ R∞.

2.2.2 Conditional indifference price and risk aversion coefficient

It follows directly from (2.2.4) that in the case where E ∼ 0, i.e., in

the case of the unconditional indifference prices, the mappings γ 7→ ν(w) (B; γ)
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and γ 7→ −ν(b) (B; γ) are non-decreasing.

Proposition 2.2.13. For γ > 0 and B ∈ L∞, the mapping γ 7→ ν(w) (B; γ)

(γ 7→ ν(b) (B; γ)) is

1. constant over Q ∈Ma and equal to the value EQ[B], when B ∈ R∞

and

2. strictly increasing (decreasing), otherwise.

Proof. We only establish the results for the writer’s price ν(w) (B; γ), as the

case of the buyer’s price follows along similar arguments.

1. By the replication invariance of the ν(w) (·; γ), the value of ν(w) (B; γ)

equals to the value EQ[B], Q ∈Ma, when B ∈ R∞.

2. Suppose now that ν(w) (B; γ1) ≤ ν(w) (B; γ2), for some 0 < γ1 < γ2. By

the dual representation (2.2.4), we have ν(w) (B; γ1) = ν(w) (B; γ2), and

using the scaling property (2.2.6), we get

αν(w) (B; γ2) = ν(w) (αB; γ2) ,

where α = γ2/γ1 > 1. By Proposition 2.2.12, B ∈ R∞.

A similar proposition in the conditional case fails. Indeed, here is a

simple example. Pick E 6∈ R∞, and set B = E, Then ν(w)(E; γ|E) = ν(b) (E; γ) -
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a strictly decreasing function of γ. An even more instructive example in which

the dependence of γ ceases to be monotone at all is given below.

Example 2.2.14. We adopt the setting of Example 2.2.3 (stated in page

22), and assume that the coefficients b and a are chosen in such a way that

the distribution function of the random variable YT is continuous (under P,

and, therefore, under every equivalent martingale measure). Let Q(0) be the

minimal-entropy martingale measure and let gi : R → R, i = 1, 2 be two

bounded Borel-measurable functions. We set

E = −g2(YT ) and B = g1(YT )− g2(YT )

and compute the conditional indifference price ν(w)(B; γ|E) as a difference

ν(w)(B; γ|E) = ν(w) (B − E; γ)− ν(w) (−E; γ) .

By part 2 of Proposition 2.2.2 and (2.2.2), we have that

ν(w)(B; γ|E) = ν(w) (g2(YT ); γ)− ν(w) (g1(YT ); γ)

=
1

γ(1− ρ2)
lnEQ(0)

[
eγ(1−ρ2)g1(YT )

eγ(1−ρ2)g2(YT )

]
.

The intervals of monotonicity of the mapping γ 7→ ν(w)(B; γ|E) therefore co-

incide with the intervals of monotonicity of the function f : (0,∞)→ R given

by

f(γ) =
1

γ

(
lnEQ(0)

[Xγ
1 ]− lnEQ(0)

[Xγ
2 ]
)
,

where the bounded and positive random variables Xi, are given by

Xi = exp((1− ρ2)gi(YT )), for i = 1, 2.
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It is clear that, thanks to the assumption of continuity of the distribution

function of of the random variable YT , any pair of probability distributions with

compact support in (0,∞) can be chosen for X1 and X2 by the appropriate

choice of the functions g1 and g2.

Thanks to the boundedness of X1 and X2, we can easily obtain the

following asymptotic expansion for the function f around γ = 0:

f(γ) = EQ(0)

[X1]− EQ(0)

[X2] + 1
2
γ(VarQ(0) [X1]− VarQ(0) [X2]) + o(γ).

In a similar manner, we have

lim
γ→∞

f(γ) = ln ||X1||L∞ − ln ||X2||L∞ .

Therefore, if X1 and X2 satisfy

1. EQ(0)
[X1] < EQ(0)

[X2], and

2. VarQ(0) [X1] < VarQ(0) [X2],

the function f is strictly decreasing and negative in a neighborhood of γ = 0.

If, in addition, we have

3. ||X1||L∞ > ||X2||L∞ ,

and f can not remain decreasing for all γ since

f(+∞) = ln (||X1||L∞/||X2||L∞) > 0 > E[X1]− E[X2] = f(0+).

The straightforward construction of examples of the random variables X1 and

X2 having the above properties is left to the reader.
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2.2.3 Asymptotics of the conditional indifference prices

The asymptotics of the unconditional indifference prices in the risk-

aversion parameter γ are well-known (see, for instance, Corollary 5.1 in [29]),

namely,

lim
γ→0

ν(w) (B; γ) = EQ(0)

[B], lim
γ→+∞

ν(w) (B; γ) = sup
Q∈Me,f

EQ[B],

lim
γ→0

ν(b) (B; γ) = EQ(0)

[B], lim
γ→+∞

ν(b) (B; γ) = inf
Q∈Me,f

EQ[B].
(2.2.9)

Using the conditional price decomposition stated in part 2 of Proposition 2.2.2,

these asymptotics are easily extended to the conditional case.

Proposition 2.2.15. For B,E ∈ L∞, we have

lim
γ→0

ν(w)(B; γ|E) = EQ(0)

[B], lim
γ→0

ν(b)(B; γ|E) = EQ(0)

[B] (2.2.10)

and

lim
γ→+∞

ν(w)(B; γ|E) = sup
Q∈Me,f

EQ[B − E] + inf
Q∈Me,f

EQ[E], (2.2.11)

lim
γ→+∞

ν(b)(B; γ|E) = inf
Q∈Me,f

EQ[B − E] + sup
Q∈Me,f

EQ[E]. (2.2.12)

One can, further, establish the continuous differentiability of the map-

ping γ 7→ ν(w)(B; γ|E), for γ ∈ (0,∞). For this, we observe that

ν(w)(B; γ|E) =
1

γ

(
ν(w) (γ(B − E); 1)− ν(w) (−γE; 1)

)
, (2.2.13)

and we recall the result of Theorem 5.3 in [51], which states that the function

γ 7→ ν(w) (γC; 1) is continuously differentiable on (0,∞) for C ∈ L∞.
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Similar results hold for the indifference price of a vector of contingent

claims. Before we state the corresponding proposition, we introduce some

further notation. For n ∈ N, let (L∞)n denote the set of all n−tuples B =

(B1, B2, . . . , Bn) of elements of L∞, with ||B||(L∞)n = maxk≤n ||Bk||L∞ . For

α = (α1, α2, . . . , αn) ∈ Rn, we write α ·B =
∑n

k=1 αkBk ∈ L∞ and set |α| =

maxk≤n |αk|. Also, EQ[B] stands for the vector (EQ[B1],EQ[B2], ...,EQ[Bn]) ∈

Rn.

Proposition 2.2.16. For E ∈ L∞ and B ∈ (L∞)n, the function

w : Rn × (0,∞]→ R given by

w(α, γ) =

ν
(w)(α ·B; γ|E), γ <∞
sup

Q∈Me,f

EQ[α ·B − E] + inf
Q∈Me,f

EQ[E], γ = +∞, (2.2.14)

is jointly continuous, and Lipschitz continuous on every subset D of the form

D = [γ0,∞)× Rn, γ0 > 0.

Proof. The functional B 7→ ν(w)(B; γ|E) is positive and equal to the identity

mapping for constant claims. Therefore, for γ ∈ (0,∞),∣∣ν(w)(α1 ·B; γ|E)− ν(w)(α2 ·B; γ|E)
∣∣ ≤ ||(α1 −α2) ·B||L∞ ≤

≤ |α1 −α2| ||B||(L∞)n .
(2.2.15)

For γ = +∞, the validity of (2.2.15) follows by passing to the limit γ → ∞.

On the other hand, by (2.2.13), for every B ∈ L∞ and γ0 > 0, we have∣∣ν(w)(B; γ1|E)− ν(w)(B; γ2|E)
∣∣ ≤ 1

γ0

(∣∣ν(w) (γ1(B − E); 1)− ν(w) (γ2(B − E); 1)
∣∣

+
∣∣ν(w) (−γ1E; 1)− ν(w) (−γ2E; 1)

∣∣) ≤ 1
γ0

(||B − E||L∞ + ||E||L∞) |γ1 − γ2|,
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for every γ1, γ2 ∈ [γ0,∞). Therefore, for each γ0 > 0, there exists a constant

C = C(γ0) > 0 such that

|w(α1, γ1)− w(α2, γ2)| ≤ C (|γ1 − γ2|+ |α1 −α2|) ,

for γ1, γ2 ∈ [γ0,∞) and α1,α2 ∈ Rn. It is left to recall from Proposition 2.2.15

that

w(α,∞) = lim
γ→∞

w(α, γ) = sup
Q∈Me,f

EQ[α ·B − E] + inf
Q∈Me,f

EQ[E].

2.3 The Residual Risk at Maturity

The notion of residual risk for the indifference price valuation was de-

fined in [63] for the setting of our Example 2.2.3., in [74] for the stochastic

volatility model and in [64] for a binomial-type model. Below, we redefine this

notion in the case where the agent has a random endowment in her portfolio.

In Appendix A, we present a brief summary of the literature on the residual

risk process.

Let γ > 0 be the agent’s risk-aversion coefficient, and B ∈ L∞ be a

contingent claim. By Theorem 2.2.4, we have that the optimization problem

with the value function uγ(x|ν(w) (B; γ)−B), introduced in (2.1.2), admits an

essentially unique maximizer ϑ(B) ∈ Θ. Following the same notation, ϑ(0) ∈ Θ

stands for the optimal strategy without the claim. We then set

ϑ̄
(B)
t = ϑ

(B)
t − ϑ(0)

t ,
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for all t ∈ [0, T ] (note that since Θ is a vector space, ϑ̄
(B) ∈ Θ). The corre-

sponding wealth process

X
(B)
t = ν(w) (B; γ) +

∫ t

0

ϑ̄
(B)
u dSu,

can be interpreted as the optimal risk-monitoring strategy for the writer of

the claim B, compensated by ν(w) (B; γ) at initial time. The hedging error

R(w)(B; γ) = B −X(B)
T

(2.3.1)

is called the (writer’s) residual risk. R(w)(B; γ) can be interpreted as the

risk remaining after the optimal hedging has been performed. Note that

R(w)(B; γ) = 0, P−a.s., for all replicable claims B ∈ L∞. In the conditional

case, an analogous discussion and the decomposition formula

ν(w)(B; γ|E) = ν(w) (B − E; γ)− ν(w) (−E; γ) ,

(see Proposition 2.2.2) allow us to define the conditional residual riskR(w)(B; γ|E)

by

R(w)(B; γ|E) = R(w)(B − E; γ)−R(w)(−E; γ),

and obtain the decomposition

B = ν(w)(B; γ|E) +

∫ T

0

ϑ̄
(B|E)
t dSt +R(w)(B; γ|E), (2.3.2)

where ϑ̄
(B|E)
t = ϑ̄

(B−E)
t − ϑ̄(−E)

t = ϑ
(B−E)
t − ϑ(−E)

t , t ∈ [0, T ].

The process (ϑ̄
(B|E)
t )t∈[0,T ], as well as the decomposition (2.3.2), could

have been derived equivalently using the optimization problems used to define

the conditional indifference prices.

38



All of the above concepts have natural analogues when seen from the

buyer’s side. Namely, we define the (buyer’s) residual risk by R(b)(B; γ) =

R(w)(−B; γ) and by R(b)(B; γ|E) = R(b)(B+E; γ)−R(b)(E; γ) in the conditional

case.

Remark 2.3.1. Using decomposition (2.3.2) and Proposition 2.2.6, we observe

that

ν(b)(R(w)(B; γ|E); γ|E) = ν(b)(B; γ|E)− ν(w)(B; γ|E).

In particular, ν(b)(R(w)(B; γ|E); γ|E) < 0 for all E ∈ R∞, and B ∈ L∞ \ R∞.

We also note that

ν(w)(R(w)(B; γ|E); γ|E) = 0,

for every E, B ∈ L∞.

2.4 Second Order Price Approximation

In general market models, it is not possible to obtain a closed-form

representation of the indifference prices. Hence an asymptotic approximation

of the prices can be very useful. In this section we provide a rather general

Taylor-type approximation of the conditional exponential indifference price for

our locally bounded semimartingale model under the additional assumption

of continuous filtrations. In the proof of the approximation, we establish that

the indifference price as a function of claim units is twice differentiable and we

also give a representation of its second derivative.

Asymptotic techniques are not new in utility maximization problems.
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In [60], a first order approximation of the optimal hedging strategy in a semi-

martingale market for general utilities (defined on the positive real line) is

provided. In [59], Theorem 10, a second order approximation is given when

utility functions defined on the positive real line are considered. This general-

izes the results of [44] and [46]. For exponential utility, the first derivative of

the indifference price for a vector of claims is given in [51]. By imposing the

assumption of continuity on the filtration, we generalize their result as well as

the asymptotic approximation in [72].

2.4.1 The first and the second derivatives

We suppose that the claim under consideration has the form α ·B for

a some vector B = (B1, B2, . . . , Bn) in (L∞)n, where α ∈ Rn. To facilitate

the reading, we use the notation

w(α) = ν(w)(α ·B; γ|E),

for α ∈ Rn.

A straightforward extension of Theorem 5.1 in [51], where we use the

fact that the conditional indifference prices are just the unconditional ones

under a change of measure, yields the following result.

Proposition 2.4.1. The function w is continuously differentiable on Rn with

∇w(α) = EQ(γα·B−γE)

[B] =
(
EQ(γα·B−γE)

[B1], . . . ,EQ(γα·B−γE)

[Bn]
)
, α ∈ Rn.

The concept of minimized variance, defined below, is important for the

study of second derivatives of the function w.
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Definition 2.4.2. Let Q ∈Me be an arbitrary equivalent martingale measure.

1. For B ∈ L∞ we define the projected variance ∆Q(B) of B under Q as

∆Q(B) = inf
ϑ∈Θ2

Q

EQ [(B − EQ[B]− (ϑ · S)T )2
]
, (2.4.1)

where, Θ2
Q = {ϑ ∈ L(S) : (ϑ · S) is square integrable Q −martingale},

so that
⋂

Q∈Me,f

Θ2
Q ⊂ Θ.

2. For B1, B2 ∈ L∞ we define the projected covariance ∆Q(B1, B2) of B1

and B2 by

∆Q(B1, B2) = 1
2
(∆Q(B1 +B2)−∆Q(B1)−∆Q(B2)).

3. For a vector B = (B1, . . . , Bn) ∈ (L∞)n and a probability measure

Q ∈Me, we define the Q−projected variance-covariance matrix ∆Q(B)

by

∆Q
ij(B) = ∆Q(Bi, Bj), i, j = 1, . . . , n.

Remark 2.4.3.

1. The projected variance ∆Q(B) is the square of the L2(Q)−norm of

the projection PQ(B) of the random variable B ∈ L∞ ⊆ L2(Q) onto

the closed subspace R ⊕
{

(ϑ · S)T : ϑ ∈ Θ2
Q
}

of L2(Q) (the closeness

of
{

(ϑ · S)T : ϑ ∈ Θ2
Q
}

in L2(Q) is an immediate consequence of the

L2(d[S])-L2(Q) isometry of stochastic integration). It follows that the

projected covariance ∆Q(B1, B2) can be represented as

∆Q(B1, B2) = EQ[PQ(B1)PQ(B2)].
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In particular, ∆Q(·, ·) is a bilinear functional on L∞ × L∞ and the fol-

lowing equality holds

∆Q(α ·B) = α ·∆Q · (B)α =
n∑

i,j=1

αi∆
Q
ij(B)αj, (2.4.2)

for all Q ∈Me, B ∈ (L∞)n and α = (α1, . . . , αn) ∈ Rn.

2. Details on the notion of the projected variance, which is closely related

to mean-variance hedging, can be found in [38] or [71]. Note that the

existence of the minimizer in the Definition 2.4.2 for bounded claims can

be established using the Kunita-Watanabe decomposition of the uni-

formly integrable Q−martingale (Bt)t∈[0,T ], defined as Bt = EQ[B|Ft].

For details on the Kunita-Watanabe decomposition we refer the reader

to [2].

We recall that a filtration is called continuous if all adapted local mar-

tingales admit continuous versions.

Lemma 2.4.4. Suppose that n = 1 and that the filtration F is continuous.

Then, for B,E ∈ L∞, the function w : R → R is twice differentiable at any

α ∈ R and its second derivative is given by

w′′(α) = γ∆Q(γαB−γE)

(B). (2.4.3)

Proof. Without loss of generality we may suppose that E = 0 (otherwise, we

work under the measure P−γE). We first focus on the case α = 0 and by

Proposition 2.4.1, we get that w′(0) = EQ(0)
[B]. Since ∆ is clearly invariant
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under constant translation, we can to assume, in addition, that EQ(0)
[B] = 0.

It will, therefore, suffice to show that

lim
α→0

∣∣∣∣ν(w) (αB; γ)

α2
− γ

2
∆Q(0)

(B)

∣∣∣∣ = 0.

By the sign invariance of ∆Q(0)
(·) and the scaling property (2.2.6) of the in-

difference prices, it suffices to consider only α > 0, i.e., it suffices to establish

that

lim
α↘0

∣∣∣∣ν(w) (B;αγ)

α
− γ

2
∆Q(0)

(B)

∣∣∣∣ = 0. (2.4.4)

Theorem A.2.1 and the definition of the residual risk process in Appendix A

yield that

ν(w) (B;αγ)

α
=
γ

2
EQ(0)

[〈L(w)(B;αγ)〉T ] =
γ

2
EQ(0)

[L
(w)
T (B;αγ)2],

where (L
(w)
t (B;αγ))t∈[0,T ] is as in Theorem A.2.1. The BMO(Q(0))−convergence

of the processes (L
(w)
t (B;αγ))t∈[0,T ] from the same theorem, implies, in par-

ticular (see Theorem A.3.2), the L2(Ω,F,Q(0))−convergence of their terminal

values, i.e.,

L
(w)
T (B;αγ)→ L

(w)
T (B; 0) in L2(Ω,F,Q(0)).

Therefore, it remains to prove that

EQ(0)
[
L

(w)
T (B; 0)2

]
= ∆Q(0)

(B), ∀B ∈ L∞.

Thanks to the final part of Theorem A.2.1, L(w)(B; 0) is strongly orthogonal

to any process of the form (ϑ · S), for ϑ ∈ Θ2
Q(0) . In particular, for ϑ ∈ Θ2

Q(0)
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and ϑ̂
(B)

as in Theorem A.2.1, we have

B − (ϑ · S)T =
(
(ϑ̂

(B)
− ϑ) · S

)
T

+ L
(w)
T (B; 0),

Therefore,

EQ(0) [
(B − (ϑ · S)T )2

]
= EQ(0)

[((
(ϑ̂

(B)
− ϑ) · S

)
T

)2
]

+ EQ(0)
[
L

(w)
T (B; 0)2

]
.

Consequently, the minimum in the definition of ∆Q(0)
(B) is attained at ϑ =

ϑ̂
(B)

. Therefore, ∆Q(B) = EQ(0)
[L

(w)
T (B; 0)2] and we conclude.

For α 6= 0, we may again assume that

w′(α) = EQ(γαB)

[B] = 0.

Hence, it is enough to show that

lim
ε→0

w(α + ε)− w(α)

ε2
=
γ

2
∆Q(αγB)

(B).

For this, we note that w(α+ε)−w(α) = v(w)(εB|−αB; γ), i.e., we can rewrite

the second derivative at some α 6= 0 as the second derivative at α = 0 with

random endowment. This observation finishes the proof.

The case n > 1 is covered by the following lemma.

Lemma 2.4.5. For α, δ ∈ Rn, B ∈ (L∞)n and E ∈ L∞ and when the filtration

F is continuous, we have

lim
ε→0

w(α+ εδ)− w(α)− ε∇w(α) · δ
ε2

= 1
2

n∑
i,j=1

δi∆
Q(γα·B−γE)

ij (B)δj. (2.4.5)
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Proof. We can assume that α = (0, . . . , 0) by absorbing the term −α ·B into

the random endowment E. The left-hand side of (2.4.5) can now be viewed as

the second derivative at 0 of the function w̃ : R→ R given by

w̃(ε) = ν(w)(εδ ·B; γ|E).

We finish the proof by employing Lemma 2.4.4 and using the equality (2.4.2),

with Q = Q(−γE) and δ substituted for α.

2.4.2 Approximation formula and examples

With the above results in our toolbox, we can give a second order

directional Taylor-type approximation of the indifference price.

Proposition 2.4.6. Let B ∈ (L∞)n, α ∈ Rn, γ > 0 and E ∈ L∞, and assume

that the filtration F is continuous. With the notions of projected variance and

covariance as in Definition 2.4.2, we have as ε→ 0

ν(w)(εα ·B; γ|E) = εα · EQ(−γE)

[B] +
ε2γ

2
α ·∆Q(−γE)

(B) ·α+ o(ε2). (2.4.6)

Example 2.4.7. For the setup of Example 2.2.3, the corresponding approx-

imation result is easily obtained by formula (2.2.2) (see, e.g., [44]). After

changing the measure P to P−γE, it is straightforward to show that

ν(w)(αB; γ|E) = αEQ(−γE)

[B] +
α2

2
γ(1− ρ2) VarQ(−γE)

(B) + o(α2), ∀B ∈ L∞,

where VarQ(B) denotes the variance of random variable B under the proba-

bility measure Q, i.e., ∆Q(−γE)
(B) = (1− ρ2) VarQ(−γE)

(B).
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Example 2.4.8. In the cases where there is no closed-form expression for the

indifference price, the approximation (2.4.6) is rather useful. One of these cases

is the stochastic volatility model studied in [72] and [50] (see also [45]). In this

model, we suppose the existence of one risky traded asset, whose dynamics are

given by

dSt = µ(t)St + σ(Yt, t)StdW
(1)
t

dYt = b(Yt, t)dt+ a(Yt, t)
(
ρdW

(1)
t + ρ′dW

(2)
t

)
,

where µ is a bounded smooth function and W (1) =
(
W (1)

)
t∈[0,T ]

and W (2) =(
W (2)

)
t∈[0,T ]

are independent Brownian Motions (for further technical assump-

tions we refer the reader to [72]).

We consider claims whose payoffs are of the form B = g(ST , YT ), where

g : R× R→ R is a bounded Borel function. For this family of claims there is

no closed-form representation of the indifference price v(w)(B; γ) (in [72] a fully

non-linear partial differential equation, whose solution is the dynamic version

of the indifference price is stated together with results on the measure Q(0)).

However, it is well-known (see [72], page 1336) that under Q(0) the dynamics

of the traded asset become

dSt = σ(Yt, t)StdW̃
(1)
t

dYt = (K(Yt, t)) dt+ a(Yt, t)
(
ρdW̃

(1)
t + ρ′dW̃

(2)
t

)
,

where K(Yt, t) is an adapted process and W̃ (1) = (W̃ (1))t∈[0,T ] and W̃ (2) =

(W̃ (2))t∈[0,T ] are two independent Brownian Motions under Q(0). Setting W̃t =
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(W̃
(1)
t , W̃

(2)
t )t∈[0,T ], we get from the martingale representation theorem that

for every claim payoff B ∈ L∞(Ω,FW̃
T ,Q(0)) there exists a process Ht =

(H
(1)
t , H

(1)
t )t∈[0,T ], such that

B = EQ(0)

[B] +

∫ T

0

H
(1)
t dW̃

(1)
t +

∫ T

0

H
(2)
t dW̃

(2)
t .

Hence, thanks to the independence between W̃ (1) and W̃ (2) we have

∆Q(0)

(B) = inf
ϑ∈Θ2

Q(0)

EQ(0)

{[
B − EQ(0)

[B]− (ϑ · S)T

]2
}

= inf
ϑ∈Θ2

Q(0)

{
EQ(0)

[(∫ T

0

H
(1)
t − ϑtσ(Yt, t)St

)2

dt

]
+ EQ(0)

[∫ T

0

(
H

(2)
t

)2

dt

]}
.

Since the process ϑ̂t =
H

(1)
t

σ(Yt,t)St
belongs to Θ2

Q(0) , it follows that

∆Q(0)

(B) = EQ(0)

[∫ T

0

(
H

(2)
t

)2

dt

]
. (2.4.7)

Proposition 2.4.6 and assertion (2.4.7) provide a generalization of the approx-

imation results of subsection 4.3 in [50].
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Chapter 3

Agents’ Agreement

The aim of this chapter is to introduce the notion of the agreement be-

tween financial agents and determine the conditions under which it is possible

for two agents to agree on non-replicable claims. We first give the correspond-

ing definition of a mutually agreeable claim and some properties of the set

of such claims. Then, a non-agreement argument in the case of replicable

random endowment is presented. In Section 3.3, the necessary and sufficient

condition, in terms of the random endowments and the risk aversion coeffi-

cients, for agreement to hold is established and discussed. Finally, in the last

two sections of this chapter, we relate the residual risk and the asymptotic

approximation of the indifference price with the notion of agreement.

In what follows, we deal with the interaction of two financial agents,

with risk aversion coefficients γ1 and γ2 and random endowments E1,E2 ∈ L∞,

respectively.
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3.1 The Mutually Agreeable Claims

The indirect utility uγ(·|E) induces a preference relation �γ,E, on L∞;

for B1, B2 ∈ L∞, we set

B1 �γ,E B2 if uγ(B1|E) ≤ uγ(B2|E).

In words, the payoff B2 is preferable to the payoff B1 for the agent with random

endowment E and risk aversion coefficient γ, if the total payoff E + B2 yields

to her more indirect utility than the payoff E +B1.

Closely related to the relation �γ,E is its strict version ≺γ,E, defined by

B1 ≺γ,E B2 if uγ(B1|E) < uγ(B2|E),

for B1, B2 ∈ L∞. Note that Aγ(E) = {B ∈ L∞ : 0 �γ,E B} and A◦γ(E) =

{B ∈ L∞ : 0 ≺γ,E B}.

Given the agents’ preference relations, we are ready to determine those

claims the transaction of which benefits both agents.

Definition 3.1.1. A contingent claim B ∈ L∞ is said to be

1. mutually agreeable if there exists a number p ∈ R such that p − B ∈

Aγ1(E1) and B − p ∈ Aγ2(E2).

2. strictly mutually agreeable if there exists a number p ∈ R such that

p−B ∈ A◦γ1
(E1) and B − p ∈ A◦γ2

(E2).
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If a claim B is (strictly) mutually agreeable, the set of all p ∈ R such that

p−B ∈ Aγ1(E1) and B−p ∈ Aγ2(E2) (or p−B ∈ A◦γ1
(E1) and B−p ∈ A◦γ2

(E2))

is called the set of (strictly) mutually-agreeable prices for B.

Remark 3.1.2. A discussion related to our notion of mutually agreeability is

given in [52], subsection 3.6, for cash invariant monetary utility functions, but

without the presence of a financial market.

Using the conditional writer’s and buyer’s indifference prices, ν(w)(·; γ1|E1)

and ν(b)(·; γ2|E2), we can give a simple characterization of the set of mutually-

agreeable prices.

Proposition 3.1.3. A claim B ∈ L∞ is mutually agreeable if and only if

ν(w)(B; γ1|E1) ≤ ν(b)(B; γ2|E2). (3.1.1)

In that case, the set of mutually-agreeable prices for B is given by

[ν(w)(B; γ1|E1), ν(b)(B; γ2|E2)].

Remark 3.1.4.

1. A version of Proposition 3.1.3 for strict mutually-agreeable prices, with

strict inequality in (3.1.1) and the interval [ν(w)(B; γ1|E1), ν(b)(B; γ2|E2)]

replaced by its interior (ν(w)(B; γ1|E1), ν(b)(B; γ2|E2)), holds.

2. For a contingent claim B ∈ L∞ \R∞, each (strictly) mutually agreeable

price p of B satisfies p ∈ (infQ∈Ma EQ[B], supQ∈Ma
EQ[B]) (see, e.g., [66],
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Proposition 7.2), i.e., every mutually-agreeable price is an arbitrage-

free price. Trivially, every claim B ∈ R∞ is mutually-agreeable and the

mutually-agreeable price is unique and equal to the unique arbitrage-free

price.

Remark 3.1.5. Thanks to the choice of the exponential utility, the case where

the agents have different subjective probability measures, say P1 6= P2, is also

covered. Indeed, if we assume that P1 ≈ P2 and ln(dP1

dP2
) ∈ L∞, we can reduce

the analysis to the case of two agents with the same subjective measure, say

P2, by adding γ1 ln(dP1

dP2
) to the first agent’s random endowment.

It will be important in the sequel to introduce the following notation

for the set of all (strictly) mutually agreeable claims.

G = {B ∈ L∞ : B is mutually agreeable} , and,

G◦ = {B ∈ L∞ : B is strictly mutually agreeable} .

We remind the reader that R∞ is the set of all replicable claims in L∞.

Proposition 3.1.6. The following statements hold

1. G is convex and σ(L∞,L1)-closed.

2. G ∩ (−G) = R∞, G◦ ∩ (−G◦) = ∅.

3. G = L∞ if and only if R∞ = L∞.
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Proof.

1. The convexity of G follows from the convexity of ν(w)(·; γ1|E1) and the

concavity of ν(b)(·; γ2|E2) (see Proposition 2.2.6). As for its closedness, it

is enough to note that ν(w)(·; γ1|E1) : L∞ → R is lower semi-continuous

and ν(b)(·; γ2|E2) : L∞ → R is upper semi-continuous with respect to the

weak-* topology σ(L∞,L1) (see Corollary 2.2.5).

2. Trivially, R∞ ⊆ G ∩ (−G). For a claim B ∈ G ∩ (−G), there exists

p, p̂ ∈ R such that p − B ∈ Aγ1(E1) and B − p ∈ Aγ2(E2) , as well as

p̂ + B ∈ Aγ1(E1) and −B − p̂ ∈ Aγ2(E2). It follows, by the convexity of

Aγ1(E1) that

1

2
(p+ p̂) =

1

2
(p−B + p̂+B) ∈ Aγ1(E1),

i.e., uγ1(0|E1) ≤ uγ1(1
2
(p + p̂)|E1). The strict monotonicity of the value

function uγ1(·|E1), for deterministic arguments, implies that 1
2
(p+p̂) ≥ 0.

Applying the same line of reasoning to Aγ2(E2) and the value function

uγ2(·|E2), we get that −1
2
(p + p̂) ≥ 0, and, consequently, p = −p̂. Using

the definitions (2.1.6) and (2.1.7) of the conditional indifference prices,

we easily get that

ν(b)(B; γ1|E1) ≥ p ≥ ν(w)(B; γ1|E1),

which, according to Corollary 3.2.2, implies that B ∈ R∞.

To prove the second claim, it suffices to observe that G◦ ∩ R∞ = ∅.

Indeed, ν(w)(B; γ1|E1) = ν(b)(B; γ2|E2) = EQ[B] for B ∈ R∞ and all

Q ∈Ma.
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3. If G = L∞ then L∞ ⊆ G ∩ (−G) so L∞ = R∞, by (2) above. Conversely,

if L∞ = R∞ then L∞ = G ∩ (−G) ⊆ G.

Remark 3.1.7. The weak-* topology σ(L∞,L1) in Proposition 3.1.6 can be

replaced by an even weaker one, namely the coarsest topology τ on L∞ which

makes the expectation mappings EQ[·] : L∞ → R continuous for each Q ∈

Me,f .

3.2 No Agreement Without Random Endowments

In this section, we state an at first glance surprising result according to

which mere difference in risk-aversion is not enough for two exponential agents

to agree on a price for any contingent claim. Qualitatively, different random

endowments are needed.

Proposition 3.2.1 (Non-agreement with replicable random endowments).

Suppose that E1 ∼ E2 ∼ 0. Then G = R∞ and G◦ = ∅.

Proof. The limiting relationships in (2.2.9) and the monotonicity properties of

the indifference prices (see Proposition 2.2.13) imply that

ν(w)(B; γ1|E1) = ν(w) (B; γ1) ≥ EQ(0)

[B]

≥ ν(b) (B; γ2) = ν(b)(B; γ2|E2),
(3.2.1)

for all B ∈ L∞. Therefore, the strict inequality ν(w)(B; γ1|E1) < ν(b)(B; γ2|E2)

- needed for the strong agreement - cannot hold. Consequently, G◦ = ∅.
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If B ∈ G, (3.2.1) implies that ν(w)(B; γ1|E1) = ν(w) (B; γ1) = EQ(0)
[B] =

limγ→0 ν
(w) (B; γ). Therefore, the function γ 7→ ν(w) (B; γ) can not be strictly

increasing on (0,∞), so, by Proposition 2.2.13, we must have B ∈ R∞. Hence,

G ⊆ R∞, which implies that G = R∞.

The following result follows directly from Proposition 3.2.1 and the fact

that the conditional indifference price becomes unconditional if the measure P

is changed to P−γE (see part 2 of Proposition 2.2.2).

Corollary 3.2.2. Suppose that E1 ∼ E2. Then for every γ > 0 and B ∈ L∞,

we have {
ν(w)(B; γ|E1) > ν(b)(B; γ|E2) for B /∈ R∞,

ν(w)(B; γ|E1) = ν(b)(B; γ|E2) otherwise.

Remark 3.2.3. A non-agreement problem in the case where the agents’ util-

ity functions are defined on the positive real line is addressed in [23]. More

precisely, the authors deal with the special case when the market incomplete-

ness comes from the presence of “extraneous risk” and conclude that there is

no agreement between the agents on non-replicable, not-necessarily-bounded

claims. However, their arguments depend heavily on the special structure of

the market and do not generalize directly to our setting.

3.3 Agreement With Random Endowments

Proposition 3.2.1 states that the absence of random endowments is a

sufficient condition for the lack of (strict) agreement. Is it also necessary?
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Given the result of Proposition 3.1.3, the question of the existence of non-

replicable mutually agreeable claims leads to the following optimization prob-

lem with value function Σ : (0,∞)2 × (L∞)2 → [0,+∞], where

Σ(γ1, γ2,E1,E2) = sup
B∈L∞

(
ν(b)(B; γ2|E2)− ν(w)(B; γ1|E1)

)
. (3.3.1)

The following result holds directly from Definition 3.1.1 of the set G.

Proposition 3.3.1. For E1,E2 ∈ L∞, γ1, γ2 ∈ (0,∞) and Σ = Σ(γ1, γ2,E1,E2),

the following two statements are equivalent

1. G◦ 6= ∅

and

2. Σ > 0.

Remark 3.3.2. The optimization problem above permits an interpretation in

terms of the so-called optimal risk-sharing problem. In the case where the

agents do not have access to a financial market, this problem has been ad-

dressed by many authors (see, e.g., [14] for its relation to the insurance-

reinsurance problem, [48] and [9] for the exponential utility case, [52] for mon-

etary utility functionals and [11] for concave preference functionals). When

a financial market is present, the problem of optimal risk sharing when both

agents have exponential utility has been studied in [10], where the authors

focus on the form of the optimal structure.

Before we proceed, we introduce the following quantities.
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Definition 3.3.3.

1. The sum E = E1 + E2 of the random endowments of the agents is called

the aggregate endowment.

2. A pair (B1, B2) in (L∞)2 is called an allocation, while an allocation

(B1, B2) such that B1 + B2 = E is called a feasible allocation; the set

of all feasible allocations will be denoted by F (E)

3. For an allocation (B1, B2), the sum ν(b) (B1; γ1) + ν(b) (B2; γ2), denoted

by σ(B1, B2), is called the score of (B1, B2). The difference σ(B1, B2)−

σ(E1,E2) is called the excess score (where, for simplicity, the parameters

γ1 and γ2 are omitted from the notation).

By Proposition 2.2.2, the expression ν(b)(B; γ2|E2)− ν(w)(B; γ1|E1) ap-

pearing in (3.3.1) above can be rewritten as

ν(b)(B; γ2|E2)− ν(w)(B; γ1|E1) = ν(b)(B; γ2|E2) + ν(b)(−B; γ1|E1)

= (ν(b) (B + E2; γ2)− ν(b) (E2; γ2)) + (ν(b) (−B + E1; γ1)− ν(b) (E1; γ1))

= σ(E1 −B,E2 +B)− σ(E1,E2).

(3.3.2)

Hence,

Σ(γ1, γ2,E1,E2) = sup {σ(B1, B2) : (B1, B2) ∈ F (E)} − σ(E1,E2).

In other words, Σ is the maximized the excess score. If we think of the aggre-

gate endowment E as the total wealth of our two-agent economy, the solution of
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(3.3.1) (if it exists) will provide a redistribution of wealth so as to maximize the

(improvement in) the score. Even though there is no direct economic reason

why the sum of individual indifference prices should be maximized, Proposi-

tion 3.3.4 - which is a mere restatement of the discussion above - explains why

the score is a useful concept.

Proposition 3.3.4. For each B ∈ L∞, the following two statements are equiv-

alent

1. B ∈ G◦

and

2. σ(E1 −B,E2 +B) > σ(E1,E2).

The following proposition characterizes the score-optimal allocation,

(compare to Theorem 2.3 in [10] and see also [14] and [48]).

Proposition 3.3.5. For any E1,E2 ∈ L∞ and γ1, γ2 > 0 there exists B∗ ∈ L∞

such that

σ(E1 −B∗,E2 +B∗) ≥ σ(B1, B2), for all (B1, B2) ∈ F (E).

Moreover, B∗ is unique up to replicability and

B∗ ∼ γ1E1 − γ2E2

γ1 + γ2

.

Proof. By (3.3.2), it suffices to show that

ν(w) (−B∗ − E2; γ2) + ν(w) (B∗ − E1; γ1)

≤ ν(w) (−B − E2; γ2) + ν(w) (B − E1; γ1) ,
(3.3.3)
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for all B ∈ L∞. The left hand side of (3.3.3) equals to

ν(w)

(
− γ1

γ1 + γ2

E; γ2

)
+ ν(w)

(
− γ2

γ1 + γ2

E; γ1

)
=

1

γ2

v(w)

(
− γ1γ2

γ1 + γ2

E; 1

)
+

1

γ1

v(w)

(
− γ1γ2

γ1 + γ2

E; 1

)
= v(w)(−E; γ̃),

where we recall that γ̃ = 1
γ1

+ 1
γ2

. Hence (3.3.3) is equivalent to

ν(w) (B − E1; γ1) + ν(w) (−B − E2; γ2) ≥ ν(w) (−E1 − E2; γ̃) ,

which holds true by Lemma 2.2.9, where the equality is valid if and only if

γ1

γ̃
(B − E1) ∼ γ2

γ̃
(−B − E2)

or equivalently if and only if

B ∼ γ1E1 − γ2E2

γ1 + γ2

.

Corollary 3.3.6. The following statements are equivalent

1. G◦ = ∅,

2. B∗ = γ1E1−γ2E2

γ1+γ2
is replicable

and

3. γ1

γ2
E1 ∼ E2.

58



Remark 3.3.7. We can relate the existence of mutually agreeable non-replicable

claims with the well-known notion of Pareto optimality . More precisely, an

allocation (B1, B2) ∈ F (E) is called Pareto optimal if @(C1, C2) ∈ F (E) such

that Bi �γi,Ei Ci for i = 1, 2 and Bi ≺γi,Ei Ci, for at least one i = 1, 2. It

follows from Corollary 3.3.6, that the condition γ1

γ2
E1 ∼ E2 implies that the

allocation (E1,E2) is the unique (up to replicability) Pareto optimal one. If

γ1

γ2
E1 6∼ E2, a transaction involving the optimal claim B∗ will lead to a Pareto

optimal allocation.

3.4 When is a Given Claim Mutually Agreeable?

In this section we attempt to answer the following question:

Provided that γ1

γ2
E1 � E2, when does a given claim B belong to G?

For this, we propose two approaches: one through the notion of residual

risk and the other based on the asymptotic approximation of the conditional

indifference prices for small quantities.

3.4.1 Agreement and residual risk

As we have seen, the writer’s residual risk of a claim B is the difference

of the agent’s liability and the optimal wealth at maturity. Intuitively, this

means that a given claim is mutually agreeable if trading this claim results

in improvement of the agents’ residual risk exposure. Below, we make this

statement precise.
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First we recall from Remark 2.3.1 that

ν(b)(R(w)(B; γ|E); γ|E) = ν(b)(B; γ|E)− ν(w)(B; γ|E),

and hence the agreement condition (3.1.1) can also be written as

B ∈ G⇔ ν(b)(R(w)(B; γ|E); γ|E) ≥ 0.

The following proposition gives a characterization of mutually agreeable

contingent claims in terms of their residual risk.

Proposition 3.4.1. For B ∈ L∞, the following statements are equivalent

1. B ∈ G,

2. the inequality

EQ [R(w)(B; γ1|E1)
]

+ EQ [R(b)(B; γ2|E2)
]
≥ 0 (3.4.1)

holds for some Q ∈Me,f ,

3. the inequality

EQ [R(w)(B − E1; γ1)−R(w)(−E1; γ1)
]
+

EQ [R(w)(−B − E2; γ2)−R(w)(−E2; γ2)
]
≥ 0

(3.4.2)

holds for some Q ∈Me,f ,

4. the inequality (3.4.1) holds for all Q ∈Me,f

and

5. the inequality (3.4.2) holds for all Q ∈Me,f .
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Proof. It is enough to make the following two observations

(a) thanks to the definition (2.3.1) of residual risk, we have that the differ-

ences ν(w)(B; γ1|E1)− R(w)(B; γ1|E1) and ν(b)(B; γ2|E2)− R(b)(B; γ2|E2)

are both of the form
∫ T

0
ϑt dSt with ϑ ∈ Θ, and

(b) the following equality holds

R(w)(B; γ1|E1)−R(b)(B; γ2|E2) = R(w)(B − E1; γ1)−R(w)(−E1; γ1)

+R(w)(−B − E2; γ2)−R(w)(−E2; γ2).

Remark 3.4.2. It should be pointed out that it is enough to check the above

inequalities only for some probability measure in Me,f . Also, it follows from

the definition of the residual risk that inequality (3.4.1) implies that the trans-

action of claim B at any price p will decrease the sum of expected residual

risks. If in addition p ∈ (ν(w)(B; γ1|E1), ν(b)(B; γ2|E2)), each agent’s expected

residual risk will be decreased.

Under the additional mild assumption of continuity for the filtration F,

we can replace the criterion given in Proposition 3.4.1 by the following one,

which sometimes is easier to check (see Section 2.3 for the additional notation).

Proposition 3.4.3. Suppose that F is continuous. For B ∈ L∞, the following

two statements are equivalent

1. B ∈ G

and
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2. γ1EQ(0)
[〈
R(w)(B − E1; γ1)

〉
T
−
〈
R(w)(−E1; γ1)

〉
T

]
+

+ γ2EQ(0)
[〈
R(w)(−B + E2; γ2)

〉
T
−
〈
R(w)(E2; γ2)

〉
T

]
≥ 0.

Proof. It follows by part 2 of Theorem A.2.1 that
〈
R(w)(B; γ)

〉
t

=
〈
L(w)(B; γ)

〉
t

for all t ∈ [0, T ]. Hence, R
(w)
t (B; γ)− γ

2

〈
R(w)(B; γ)

〉
t

is a Q(0)−martingale, for

any γ > 0 and B ∈ L∞. The desired equivalence then follows by Proposition

3.4.1.

Remark 3.4.4. In the case where a claim B is mutually agreeable, the exact

price p ∈
(
ν(b)(B; γ|E), ν(w)(B; γ|E)

)
at which the transaction will take place

in not determined by the arguments above. For the specification of this price,

a negotiation model is necessary. A pricing scheme related to this problem is

given in [3], where the agents’ risk preferences are modelled by general utility

functions.

Example 3.4.5. We adopt the setup of Example 2.2.3 and suppose that

E1 = g1(YT ) and E2 = g2(YT ) for some Borel bounded functions, g1 and g2.

Proposition 3.1.3 and representation (2.2.2) imply that B = g(YT ) ∈ G if and

only if EQ(0)
(
eγ1B̃e−γ1Ẽ1

)
EQ(0)

(
e−γ1Ẽ1

)


γ2
γ1

≤
EQ(0)

(
e−γ2Ẽ2

)
EQ(0)

(
e−γ2Ẽ2e−γ2B̃

) ,
where B̃ = (1− ρ2)B and Ẽi = (1− ρ2)Ei, i = 1, 2.

As we have seen, ν(w) (B; γ1) > ν(b) (B; γ2), ∀B � 0. It is easy to verify

that ν(w)(B; γ1|E1) ≤ ν(w) (B; γ1) if and only if CovQ(0)

(E1, B) ≥ 0, where

CovQ(0)

(., .) is the covariance under the measure Q(0). This means that the
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presence of a random endowment which is positively correlated with the claim

payoff, reduces the writer’s indifference price.

Similarly, ν(b)(B; γ2|E2) ≥ ν(b) (B; γ2) if and only if CovQ(0)

(E2, B) ≤ 0.

Therefore, we infer that a necessary condition for a claim B to be mutually

agreeable is that CovQ(0)

(E1, B) > 0, or CovQ(0)

(E2, B) < 0.

3.4.2 Agreement and price approximation

Although the asymptotic expansion (2.4.6) in Proposition 2.4.6 above

is important in its own right, it can also be applied to provide the follow-

ing criterion for mutual agreement for a small quantity of a given contingent

claim. In other words, when the size of the claim whose price is negotiated is

small compared to the sizes of agent’s contingent claims (and this is typically

the case in practice), one can use a Taylor-type expansion of the indifference

price around 0, and obtain more precise quantitative answers to the agreement

question. This is discussed next.

Proposition 3.4.6. Suppose that F is continuous and that the random en-

dowments E1,E2 ∈ L∞ and risk-aversion coefficients γ1, γ2 > 0 are chosen.

Let B ∈ L∞ be a given contingent claim. The set G◦ contains a segment of the

form

{αB : α ∈ (0, α0)} for some α0 > 0 iff ,EQ(−γ1E1)

[B] < EQ(−γ2E2)

[B].

Similarly, the set G◦ contains a segment of the form

{αB : α ∈ (−α0, 0)} for some α0 > 0 iff ,EQ(−γ1E1)

[B] > EQ(−γ2E2)

[B].
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Proof. We first note that the convexity of G◦ implies that, if there exists α0 > 0

such that α0B ∈ G◦, then αB ∈ G◦, for all α ∈ (0, α0]. By equation (2.4.6),

ν(w)(αB; γ1|E1) = αEQ(−γ1E1)

[B] + o(α)

and

ν(b)(αB; γ2|E2) = αEQ(−γ2E2)

[B] + o(α).

Hence, the inequality EQ(−γ1E1)
[B] < EQ(−γ2E2)

[B] yields that there exists α0 > 0

small enough such that ν(w)(α0B; γ1|E1) < ν(b)(α0B; γ2|E2), i.e., α0B ∈ G◦.

On the other hand, suppose that there exists α0 > 0 such that α0B ∈

G◦ and assume that EQ(−γ1E1)
[B] ≥ EQ(−γ2E2)

[B]. It is easy to check that

∆Q(−γiEi)(B) > 0 for i = 1, 2 (since B /∈ R∞). Also, by (2.4.6) and its buyer’s

version, we get

αEQ(−γ1E1)

[B] +
α2γ1

2
∆Q(−γ1E1)

(B) < αEQ(−γ2E2)

[B]− α2γ2

2
∆Q(−γ2E2)

(B) + o(α2)

for every α close to zero such that 0 < α ≤ α0 (note that thanks to the

linearity of Θ2
Q, we have ∆Q(B) = ∆Q(−B), ∀B ∈ L∞).

This implies that for any such α

α2

2
(γ1∆Q(−γ1E1)

(B) + γ2∆Q(−γ2E2)

(B)) + o(α2) < 0,

Dividing through by α2 and letting α→ 0, we get that

γ1∆Q(−γ1E1)

(B) + γ2∆Q(−γ2E2)

(B) ≤ 0,

which is a contradiction. The proof of the second argument is similar and

hence omitted.
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Remark 3.4.7. It is clear from Proposition 3.4.6 that the order of the marginal

prices, EQ(−γ1E1)
[B] and EQ(−γ2E2)

[B], specifies which of the agents is willing to

be the writer and which the seller of some units of claim B. We can further

provide an approximation of the size of the set of the agreement prices for

small number of units. More precisely, if EQ(−γ1E1)
[B] 6= EQ(−γ2E2)

[B], it holds

that

ν(b)(αB; γ2|E2)− ν(w)(αB; γ1|E1)

= α(EQ(−γ2E2)

[B]−EQ(−γ1E1)

[B])−α
2

2
(γ1∆Q(−γ1E1)

(B)+γ2∆Q(−γ2E2)

(B))+o(α2),

(3.4.3)

for every α ∈ R close to zero.
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Chapter 4

The Partial Equilibrium Pricing

This chapter deals with the existence and uniqueness of a partial equi-

librium price of a contingent claim in our two-agents economy. The discussion

of mutual agreeability in the previous chapter assumed that the number of

units is fixed and the claim is indivisible. If, however, the negotiation between

agents involves both the quantity traded and the price, and if this quantity

is not constrained by quantization, a great deal more can be said about the

outcome of the negotiation. The main advantage is that the methodology of

equilibrium theory can be applied and a unique price-quantity pair singled

out on the basis of the fundamental economic principle of market clearing. We

stress that the agents take the form of the claims as given and do not engage

in any form of optimal design, as is the case in many real-world situations in

insurance, illiquid markets, bulk sales of shares, etc.

We divide this chapter into two sections. In the first one, we introduce

some helpful notation and we define and analyze the utility-based demand

function on a given vector of claims. In the second section, we state the main

theorem of our equilibrium pricing together with a number of related remarks.

Since agents’ acceptance sets depend on every undertaken risky invest-
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ment, it is more realistic for a pricing rule to apply to a vector of claims

instead of a single one. In what follows, we fix a vector of contingent claims,

B = (B1, B2, . . . , Bn) ∈ (L∞)n.

4.1 The Demand Function

In this section, we introduce the notion of the demand function and

analyze some of its properties. First, we define the “restrictions” U i : Rn ×

Rn → R, i ∈ {1, 2} of the value functions uγ1(·|E1) and uγ2(·|E2) (see (2.1.2))

by

U i(α;p) =

{
uγi(α · (B − p)|Ei), α ∈ Rn,
lim supα′→α,α′∈Rn U i(α

′;p), α ∈ Rn \ Rn,
p ∈ Rn,

(4.1.1)

for i ∈ {1, 2}, where R denotes the extended set R ∪ {±∞} of real numbers.

In other words, U i(·;p) is the extension of the continuous function U i(·;p)
∣∣∣
Rn

to Rn by upper semi-continuity and gives the indirect utility of agent i when

she holds α units of B, purchased at price p.

Definition 4.1.1. The demand correspondence Zi : Rn → 2Rn , for the agent

i ∈ {1, 2}, is defined by

Zi(p) = argmax
{
U i(α,p) : α ∈ Rn

}
, p ∈ Rn. (4.1.2)

Intuitively, the elements of Zi(p) give the numbers of units of B that

agent i is willing to purchase at price p (the numbers of units that maximize

her indirect utility).
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For the remainder of this chapter we enforce the following assumption.

Assumption 4.1.2. There exists no α ∈ Rn \ {0} such that α ·B ∼ 0.

In other words, through Assumption 4.1.2 we impose that there is no

linear combination of the claims B1, B2, ..., Bn which can be replicated by the

traded assets.

Before we present some properties of the demand function, we need

to introduce some further notation. We denote by PNA ⊆ Rn the set of all

arbitrage-free price-vectors of the contingent claims B, i.e.,

PNA =
{
EQ[B] : Q ∈Me

}
,

where, as usual, EQ[B] = (EQ[B1], . . . ,EQ[Bn]) ∈ Rn. To simplify the nota-

tion, we introduce two n-dimensional families of measures in Me, parameter-

ized by α ∈ Rn,

Q(α)
i = Q(γiα·B−γiEi), α ∈ Rn, i = 1, 2.

We, then, define the following sets

PUi =
{
EQ(α)

i [B] : α ∈ Rn
}
, for i = 1, 2.

In general, PUi ⊆ PNA, for i = 1, 2. The equality holds when Ei ∼ 0

(see [51], Lemma 7.1). For future use, we define the function ui : Rn → R by
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ui(p) = sup
α∈R̄n

{U i(α;p)}, for i ∈ {1, 2}. Building on the notation of Section

2.4, we also introduce the following two shorthands

wi(α) = ν(w)(α ·B; γi|Ei)

bi(α) = ν(b)(α ·B; γi|Ei)

 α ∈ Rn, i ∈ {1, 2} . (4.1.3)

Lemma 4.1.3. For i = 1, 2, wi is strictly convex and bi is strictly concave.

Proof. A change of the probability measure P to P−γiEi can be employed to

justify no loss of generality if we assume that Ei = 0 in this proof. The fact that

wi(·) is convex follows from the convexity of the indifference price. In order

to establish that the convexity is, in fact, strict, we assume, to the contrary,

that there exist α1,α2 ∈ Rn with α1 6= α2 and λ ∈ (0, 1) such that

wi(λα1 + (1− λ)α2) = λwi(α1) + (1− λ)wi(α2).

Equivalently, we then have

ν(w) ((λα1 + (1− λ)α2) ·B; γi) = ν(w)
(
λα1 ·B; γi

λ

)
+ ν(w)

(
(1− λ)α2 ·B; γi

1−λ

)
Since (γi

λ
)−1 + ( γi

1−λ)−1 = (γi)
−1, we can use Lemma 2.2.9 to conclude that

α1 ·B ∼ α2 ·B, i.e., α ·B ∼ 0, where α = α1 −α2 6= 0 ∈ Rn,

a contradiction with Assumption 4.1.2. A similar argument can be employed

to prove the strict concavity of bi, i ∈ {1, 2}.

Proposition 4.1.4. For i ∈ {1, 2}, the functions ui(·) and Zi(·) have the

following properties
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1. The maximum in (4.1.2) is always attained, i.e., Zi(p) 6= ∅, for all

p ∈ Rn.

2. For p ∈ Rn, we have

Zi(p) = argmax
α∈Rn

{ν(b)(α ·B; γi|Ei)−α · p}. (4.1.4)

3. Either Zi(p) = {α} for some α ∈ Rn or Zi ⊆ R
n \ Rn.

4. Zi(p) = {α} if and only if EQ(α)
i [B] = p (in particular, p ∈ PUi ).

Proof.

1. It follows from the fact that the function Zi is upper semi-continuous on

the compact space Rn.

2. It suffices to observe that (2.1.7) implies that

ui(p) = exp{−γi sup
α∈R̄n

(ν(b)(α ·B; γi|Ei)−α · p)}
(
uγi(0|Ei)

)
, (4.1.5)

for all p ∈ Rn.

3. The set Zi(p) is convex, so if it contains a point in Rn and a point

in Rn \ Rn, it must contain infinitely many points in Rn. This is in

contradiction with the strict concavity of bi on Rn.

4. Proposition 2.4.1 states that bi is continuously differentiable on Rn and

that ∇bi(α) = EQ(−α)
i [B]. Therefore, ν(b)(α ·B; γi|Ei)−α ·p is a concave

and differentiable function of α ∈ Rn and its derivative is given by

70



EQ(−α)
i [B]−p. Consequently, ν(b)(α·B; γi|Ei)−α·p attains its maximum

on Rn if and only if EQ(−α)
i [B] = p has a solution α ∈ Rn. In that case,

Zi(p) = {α}.

4.2 Partial Equilibrium Price-Quantity

Using the definition of the demand function for a fixed vector of claims

and the notation introduced above, we are ready to give the definition of the

partial equilibrium price-quantity.

Definition 4.2.1. A pair (p,α) ∈ Rn × Rn is called a partial-equilibrium

price-quantity (PEPQ) if

α ∈ Z1(p) and −α ∈ Z2(p). (4.2.1)

A vector p ∈ Rn for which there exists α ∈ Rn such that (p,α) is a PEPQ is

called a partial-equilibrium price (PEP).

In other words, the PEP is the price-vector of the contingent claim B

at which the quantity that one agent is willing to sell is equal to the quantity

which the other agent is wants to buy.

Taking into account Proposition 4.1.4, we are able to provide the equa-

tion that the equilibrium quantity must satisfy.
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Proposition 4.2.2. A pair (p̂, α̂) is a PEPQ if and only if p̂ ∈ PU1 ∩ PU2 ,

α ∈ Rn and

EQ(α̂)
1 [B] = EQ(−α̂)

2 [B] = p̂. (4.2.2)

Proof. If (p̂, α̂) is a PEPQ, then Zi(p̂)∩Rn 6= ∅ and, so, by Proposition 4.1.4,

part 3., we must have Zi(p̂) = {αi}, for some αi ∈ Rn and p̂ ∈ PUi , for i = 1, 2.

By (4.2.1), we have α1 = −α2. The equalities in (5.4.8), with α̂ = α1 follow

directly from part 4. of Proposition 4.1.4.

Conversely, suppose that (5.4.8) holds. Then, by part 4. of Proposition

4.1.4, we have Z1(p) = {α̂} and Z2(p) = {−α̂}, which, in turn, implies

(4.2.1).

We have also shown the following result which will be used shortly:

Corollary 4.2.3. A pair (p̂, α̂) ∈ (PU1 ∩ PU2 )× Rn is a PEPQ if and only if

w1(α̂)− b2(α̂) ≤ w1(α)− b2(α) for any α ∈ Rn, and p̂ = ∇w1(α̂).

The main result of this section is presented in the following Theorem.

Theorem 4.2.4. Let E1,E2 ∈ L∞, γ1, γ2 > 0 and B ∈ (L∞)n be arbitrary,

and suppose that the Assumption 4.1.2 is satisfied. Then, there exists a unique

partial equilibrium price-quantity (α,p) ∈ Rn × Rn. Moreover, p ∈ PU1 ∩ PU2 .

Proof. If the PEPQ (α,p) exists, then α globally minimizes the strictly con-

cave function w1 − b2, so it must be unique. To establish existence, it will be
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enough to solve the equation ∇f = 0, where f = w1 − b2. Assume, to the

contrary, that ∇f(α) 6= 0, for all α ∈ Rn. The continuity of f implies that,

for each m ∈ N, there exists αm ∈ Bm = {α ∈ Rn :
∑n

i=1 |αi| ≤ m} such that

f(αm) ≤ f(α) for all α ∈ Bm. Thanks to the strict convexity of f and the

fact that ∇f 6= 0 on Bm, we must have ||αm||1 = m, where ||α||1 =
∑n

i=1 |αi|.

In order to obtain a contradiction, it will be enough to show that

lim inf
m→∞

f(αm)
m

> 0. (4.2.3)

Indeed, (4.2.3) would provide the following coercivity condition

lim inf
m→∞

inf

{
f(α)

||α||1
: α ∈ Bm \ {0}

}
> 0,

which, in turn, would guarantee existence of a global minimizer α0 ∈ Rn for

f (see Chapter 1 of [16]), at which ∇f(α0) = 0 holds.

The first step in the proof of (4.2.3) uses the representation given in

part 2 of Proposition 2.2.2 and the risk-measure properties of ν(w)(·; γ|E) to

obtain the following

lim inf
m→∞

f(αm)
m

= lim inf
m→∞

1
m

(
ν(w) (αm ·B − E1; γ1) + ν(w) (−αm ·B − E2; γ2)

)
≥ lim inf

m→∞

1

m

(
ν(w) (αm ·B; γ1)− ||E1||L∞ + ν(w) (−αm ·B; γ2)− ||E2||L∞

)
= lim inf

m→∞

(
ν(w)

(
1
m
αm ·B;mγ1

)
+ ν(w)

(
− 1
m
αm ·B;mγ2

) )
.

Any subsequence of N, through which the lim inf above is achieved admits a

further subsequence (mk)k∈N such that the sequence 1
mk
αmk converges to some
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α0 ∈ Rn with ||α0||1 = 1; indeed, the sequence ( 1
m
αm)m∈N takes values in the

compact set {α ∈ Rn : ||α||1 = 1}. Proposition 2.2.16 implies that

ν(w)
(

1
mk
αmk ·B;mkγ1

)
→ sup

Q∈Me

EQ[α0 ·B],

and ν(w)
(
− 1
mk
αmk ·B;mkγ2

)
→ − inf

Q∈Me

EQ[α0 ·B],
(4.2.4)

as k →∞. Therefore,

lim inf
m→∞

1
m
f(αm) = sup

Q∈Me

EQ[α0 ·B]− inf
Q∈Me

EQ[α0 ·B].

It remains to observe that the equality supQ∈Me
EQ[α0·B] = infQ∈Me EQ[α0·B]

cannot hold; if it did, Assumption 4.1.2 would be violated.

Remark 4.2.5. The concept of the partial equilibrium pricing as stated in Def-

inition 4.2.1 has its roots in the classic market clearing equilibrium arguments

(see e.g., [15], Chapter 6 of [61], for the mathematical overview). The above

proof of the existence of the PEPQ (and its uniqueness guaranteed by As-

sumption 4.1.2) differs from the classical scheme in the following sense: the

special properties of the exponential utility and, in particular, the form of

the induced demand function, allow us to derive an explicit expression for the

PEPQ; namely, it is given as the minimizer of the difference w1(α) − b2(α).

Additionally, and unlike the classical approach, such a constructive expression

opens a possibility of efficient numerical computation in many cases of interest.

Remark 4.2.6.

1. When n = 1, the proof above can be simplified considerably; one can
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show that

lim
α→∞

w′1(α) > lim
α→∞

b′2(α) and lim
α→−∞

w′1(α) < lim
α→−∞

b′2(α),

and deduce the existence of the solution of the equation w′1(α) = b′2(α)

directly.

In addition, by Remark 3.4.7, we easily get that the quantity

α̃ =
EQ(−γ2E2)

[B]− EQ(−γ1E1)
[B]

γ1∆Q(−γ1E1)
(B) + γ2∆Q(−γ2E2)

(B)

minimizes the second order approximation of the difference w1(α)−b2(α).

In view of Corollary 4.2.3, we can heuristically consider α̃ as an approx-

imation of the partial equilibrium quantity (PEQ), provided that α̃ is

close to zero.

2. Corollary 3.3.6 and the discussion preceding it show that when γ1

γ2
E1 ∼

E2, the unique PEPQ must be of the form (0,p), where p = EQ(−γ1E1)
[B] =

EQ(−γ2E2)
[B] for every B which satisfies the Assumption 4.1.2. In such

cases p should not be interpreted as a price of B, since no transaction

actually occurs. Furthermore, the strict agreement (in the sense of Def-

inition 3.1.1) can then be reached for no contingent claim of the from

α ·B, α ∈ Rn.

Even when γ1

γ2
E1 � E2, there might exist claims for which the PEPQ is

of the form (0,p). In fact, PEPQ is of the form (0,p) if and only if

EQ(−γ1E1)
[B] = EQ(−γ2E2)

[B] (see Proposition 3.4.6). As an example, con-

sider a claim B which is independent of the stochastic process S, as well
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as the two random endowments. The partial equilibrium price is then

simply a certainty equivalent p = E[B] = EQ(−γ1E1)
[B] = EQ(−γ2E2)

[B].

If a vector of claims B satisfies the Assumption 4.1.2 and its PEPQ is

of the form (0,p), then ν(w)(α · B; γ1|E1) − ν(b)(α · B; γ2|E2) > 0, for

every α ∈ Rn \ {0}, i.e., α ·B /∈ G for all α 6= 0. In other words, any

trade in a nontrivial linear combination α ·B must make at least one of

the agents strictly worse off.
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Chapter 5

Agreement and Equilibrium Under Convex

Capital Requirements

The aim of this chapter is to generalize the concept of agents’ agree-

ment, discussed in previous sections, by allowing a larger class of agents’ ac-

ceptance sets and including more than two agents into the scheme. More

precisely, we suppose that the agents’ acceptance sets are not necessarily in-

duced by utility maximization problems, but instead, we require that they

satisfy some minimal financially rational axioms. These axioms are inspired

by the relatively new and recently widely developed Theory of Convex Risk

Measures. In Appendix B, a short introduction and a summary of the main

results of this theory are provided. We consider the same locally bounded semi-

martingale financial market introduced in the previous chapters and assume

that the agents’ contingent claim valuation is based on their acceptance sets,

in a similar fashion to the case of indifference pricing. We, then, generalize the

notion of agreeable claims, and impose and discuss the necessary assumptions

that lead to the existence and uniqueness of the partial equilibrium price for

a vector of claims.

In Section 5.1, we state the axioms that an agent’s acceptance set should
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satisfy. More precisely, we require that such a set is monotone, convex, contains

zero and does not include non-positive payoffs. An axiom that connects the

acceptance set with the market and the admissible strategies is also imposed

(see axiom Ax4, at page 81). Following the arguments of the utility indifference

pricing, we define the risk measure (induced from the acceptance set) of an

arbitrary payoff to be the minimum amount of money such that, when added

to the payoff, creates an acceptable position. A number of properties of this

measure are also presented.

Section 5.2 is dedicated to the robust representation of the risk measure

in the spirit of Theorem B.0.7. More precisely, we show that the effective do-

main of the corresponding penalty function is included in Ma (the absolutely

continuous martingale probability measures). Similarly, as in the case of expo-

nential utility, we define an equivalence relation (with respect to risk) among

the essentially bounded payoffs. Using this relation, we introduce the property

of risk-strict convexity of an acceptance set; roughly speaking, an acceptance

set is risk-strictly convex if for every pair of acceptable claims, which do not

belong to the same equivalence class, every convex combination of these claims

results in strictly less risk. Imposing this assumption, we are able to restrict

ourselves only to equivalent martingale measures.

In Section 5.3, we attempt to generalize the notion of agreement by

allowing more than two agents and considering a vector of claims, instead of a

single one. Given a vector of contingent claims B = (B1, B2, ..., Bn), we first

define its set of allocations, i.e., the set of matrices that represent the feasible
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ways to share the units of claims in B among the agents. Then, we say that

the pair of B and its allocation a is a mutually-agreeable claim-allocation if

there is a price vector p at which the sharing of B according to allocation a

is acceptable for every agents. In the last part of Section 5.3, we connect this

generalized agreement notion with the so-called inf-convolution risk measure.

Finally, in Section 5.4, we deal with the market clearing equilibrium

pricing arguments. We fix a vector of claims B and define the agent’s demand

function in a similar way as in Chapter 4. By imposing a strict convexity

assumption on the agent’s acceptance set, we show that the induced risk mea-

sure is differentiable as a function of units of the claims in B. In turn, we

provide a formula for its gradient. Using these results, we are able to exhibit

some properties of the demand function such as monotonicity and continuity.

In subsection 5.4.2, we include the definition of the partial equilibrium price-

allocation (PEPA); a price vector p is called a partial equilibrium price if the

sum of agents’ demand functions at p is zero. The corresponding allocation,

determined by the demand functions, is called a partial equilibrium allocation

(as mentioned in the Introduction, the term allocation is chosen instead of the

term quantity to indicate the possibility of the participation of more than two

agents). By imposing two necessary assumptions, we establish the existence

and uniqueness of the PEPA.
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5.1 Acceptance Sets and the Market

In this section, we adopt the market setting introduced in page 12, and

consider a financial agent who invests in this market by creating self-financing

portfolios. Since we do not restrict ourselves to exponential utility maximizers,

we consider a set of admissible strategies different than the set Θ defined in

(2.1.1). First, we relax Assumption 2.1.1 by replacing it by the following

weaker one.

Assumption 5.1.1. Me 6= ∅.

We call a strategy h ∈ L(S) admissible if the stochastic integral (h ·S)t

is uniformly bounded from below, i.e., the set of admissible strategies is given

by

H = {h ∈ L(S) : ∃c ∈ R such that c ≤ (h · S)t, ∀t ∈ [0, T ]} (5.1.1)

The gains process obtained by investing the initial wealth x ∈ R according to

a strategy h ∈H is denoted by Xx,h
t , i.e.,

Xx,h
t = x+ (h · S)t = x+

∫ t

0

hu dSu, t ∈ [0, T ]. (5.1.2)

In addition, X(x) =
{
Xx,h
T : h ∈H

}
is called the set of admissible terminal

gains with initial wealth x, for x ∈ R.

In what follows, we will use the notations X =
⋃
x∈R

X(x) and X∞ =

X∩L∞. We, also, define the set R = {X ∈ X : −X ∈ X}, i.e., X ∈ R if there

exists x ∈ R and h ∈H such that X = x+ (h · S)T and (h · S)t is uniformly

bounded. Note that R ⊆ L∞.
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Remark 5.1.2. The lower bound on the losses of the admissible strategies is

imposed in order to avoid the pathologies that the so-called doubling strate-

gies create. Moreover, Assumption 5.1.1 excludes the existence of arbitrage

opportunities in the market of traded assets S (see [30], Corollary 1.2). Note

also that X ∈ X∞ does not imply that −X ∈ X, since there exist admissible

strategies such that (h · S)T ∈ L∞ and (−h · S)t is not uniformly bounded

from below.

Given the financial market S and the set of admissible strategies H ,

we assume that each agent’s risk preferences, investment goals and random

endowment are incorporated in a set Ã ⊆ L0(F), called the acceptance set . In

fact, Ã contains the discounted net wealth of all the investment positions the

agent is willing to undertake at time t = 0. Following the literature on convex

risk measures, we assume that Ã satisfies the following axioms.

Ax1. For B,C ∈ L0(F), if B ∈ Ã and B ≤ C, then C ∈ Ã. If also B,C ∈ L∞,

then B ≤ C, P−a.s. and B ∈ Ã implies that C ∈ Ã.

Ax2. Ã is convex.

Ax3. Ã ∩ L0
−(F) = {0}.

Ax4. For every B ∈ Ã, we have that B − (h · S)T ∈ Ã, for every h ∈H .

A direct consequence of axiom Ax4. is the following property.

If there exists X ∈ X(x) such that B +X ∈ Ã, then x+B ∈ Ã. (5.1.3)
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As discussed in Appendix B, axiom Ax1 simply states that every investment

with payoff higher than the payoff of an acceptable claim is also acceptable.

Axiom Ax2 reflects the fact that diversified portfolios of acceptable invest-

ments should also be acceptable, while Axiom Ax3 means that the status quo

(i.e., undertaking no investments) is an acceptable position and that the in-

vestments with non-positive, different than zero payoffs are not acceptable.

Finally, axiom Ax4 is the one that connects the market to the agent’s accept-

able positions. If B ∈ Ã, the position B−X +x belongs in Ã, since the agent

can use x to replicate X and add it to B − X. Similarly, if B + X ∈ Ã for

some replicable position X, the payoff B plus the replication cost of X should

also belong to Ã.

An example of an acceptance set that satisfies these axioms is the set

Aγ(E) defined in (2.1.4).

In what follows, we denote by A the set of essentially bounded accept-

able claims, i.e., A = Ã∩L∞. Given the acceptance set Ã, we call the mapping

ρA : L∞ → R̄, defined by

ρA(B) = inf{m ∈ R : m+B ∈ Ã}, for every B ∈ L∞, (5.1.4)

the agent’s convex capital requirement . It follows (see B.0.5) that ρA(·) is

convex, decreasing and cash invariant (see also Definition B.0.3 for details).

By axioms Ax1 and Ax2, we get that ρA(0) = 0. Also, thanks to the in-

equality−‖B‖L∞ ≤ B ≤ ‖B‖L∞ and axiom Ax1, ρA(B) ∈ [−‖B‖L∞ , ‖B‖L∞ ] ⊆

R for every B ∈ L∞.
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It is, also, straightforward to get that A ⊆ {B ∈ L∞ : ρA(B) ≤ 0}. If,

in addition, the acceptance set Ã satisfies the following closure property, the

inverse inclusion also holds (see, also, Remark B.0.6).

The set
{
λ ∈ [0, 1] : λm+ (1− λ)B ∈ Ã

}
is closed in [0, 1], (5.1.5)

for every m ∈ R+ and B ∈ L∞.

Property (5.1.5) holds, in particular, if Ã ∩ V is closed for any finite-

dimensional subspace V ⊆ L∞.

Summing up, we have shown the following proposition.

Proposition 5.1.3. If an acceptance set Ã satisfies the axioms Ax1-Ax4 and

property (5.1.5), the mapping ρA : L∞ → R defined in (5.1.4) is a convex risk

measure, for which ρA(0) = 0. Furthermore, the intersection A = Ã∩L∞ can

be recovered from ρA(·) through the equality A = {B ∈ L∞ : ρA(B) ≤ 0}.

In what follows, with a slight abuse of terminology, when we refer the

term acceptance set we will refer to the set A = Ã ∩ L∞, for Ã that satisfies

Ax1 -Ax4.

Remark 5.1.4. Similar definitions of the convex capital requirement have been

given in [37] (page 207) and [41]. In the former, a given acceptance set A is

related to the market through a larger acceptance set Â, defined as

Â = {B ∈ L∞ : ∃X ∈ X(0), A ∈ A such that X +B ≥ A,P− a.s.} (5.1.6)

In our case, (5.1.3) yields that Â = A, which means that the definition of the

acceptance set A has already taken the market into account.
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In [41], the authors define the generalized capital requirement by

ρ̂A(B) = inf {m ∈ R : ∃X ∈ X(m) such that X +B ∈ A} .

If the acceptance set Ã satisfies the axioms Ax1 -Ax4, it is straightforward to

show that ρA(B) = ρ̂A(B).

5.2 The Robust Representation

If we suppose that the set A is weak-*closed (i.e., closed in the topology

σ(L∞,L1)), the convex risk measure ρA(·) admits a robust representation in

the sense of [6], [28] and [36] (see Theorem B.0.7) and, also, satisfies the

property (5.1.5). Axiom Ax4 provides some further information about the

penalty function and, in particular, about its effective domain, denoted by

MA.

Proposition 5.2.1. If A is a weak-*closed acceptance set, then ρA admits a

robust representation of the following form

ρA(B) = sup
Q∈Ma

{EQ[−B]− αA(Q)}, (5.2.1)

for every B ∈ L∞, where αA(Q) = sup
B∈A
{EQ[−B]}, i.e., MA ⊆ Ma. Also, the

supremum is attained by a measure (possibly not unique), denoted by Q(B)
A .

Proof. It is enough to show that for every Q /∈Ma, αA(Q) = +∞.

For every such Q, there exists an admissible terminal wealth X ∈ X(x),

such that EQ[X] > x, i.e., there exists a portfolio h ∈ H , such that (h · S)t
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is uniformly bounded from below and EQ[(h · S)T ] > 0 (see Theorem 5.6 in

[30]). Then, for every k ∈ N, we define Bk = −((h ·S)T ∧ k), which belongs to

L∞. Hence, Bk + (h · S)T = ((h · S)T − k)1{(h·S)T≥k} ≥ 0, which means that

Bk + (h · S)T ∈ Ã for every k ∈ N. Also, by (5.1.3) we have that λBk ∈ A,

for all λ > 0. Hence, αA(Q) ≥ EQ[−λBk], for every k ∈ N. Letting k go to

infinity, we get from the monotone convergence theorem that

αA(Q) ≥ λEQ[(h · S)T ].

If we let λ go to infinity, we conclude.

Note that since ρA(0) = 0, min
Q∈MA

{αA(Q)} = 0.

Corollary 5.2.2. If A is a weak-*closed acceptance set, ρA(·) satisfies the

following replication invariance property: For every B ∈ L∞ and every C ∈ R

such that C = x+ (h · S)T , P−a.s., for some x ∈ R and h ∈H, it holds that

ρA(B + C) = ρA(B)− x.

Below we give a definition (analogous to Definition 2.1.2) of equivalence

classes with respect to risk.

Definition 5.2.3. We call two random variables B,C ∈ L∞ equivalent with

respect to their risk, and we write B ∼ C, if B − C ∈ R.

The condition B ∼ C means that the claims with payoffs B and C

carry the same unhedgeable risk. B ∼ C also implies that for every λ ∈ [0, 1],
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ρA(λB + (1 − λ)C) = λρA(B) + (1 − λ)ρA(C). This is because, B ∼ C is

equivalent to the existence of some x ∈ R and h ∈ H such that B − C =

x+ (h · S)T , P−a.s.. By Corollary 5.2.2, we get that

ρA(λB + (1− λ)C) = ρA(C + λx+ (λh · S)T ) = ρA(C)− λx

and also

λρA(B) + (1− λ)ρA(C) = λρA(C)− λx+ (1− λ)ρA(C) = ρA(C)− λx.

On the other hand, if B � C, convex combinations of the payoffs B and

C may lead to reduction of risk. If any such combination of claims (which do

not belong in the same equivalence class) reduces the risk, the corresponding

acceptance set A is called risk-strictly convex.

Definition 5.2.4. A weak-*closed acceptance set A is called risk-strictly con-

vex if for every B,C ∈ A with B � C, it holds that for every λ ∈ (0, 1) there

exists a random variable E ∈ L∞+ such that, Q(λB+(1−λ)C)
A (E > 0) > 0, and

λB + (1− λ)C − E ∈ A.

Proposition 5.2.5. Let A be a weak-*closed acceptance set. Then, A is risk-

strictly convex if and only if its induced risk measure ρA is strictly convex up

to the claims which do not belong to the same equivalence class.

Proof. We first assume that A is risk-strictly convex. For arbitrarily chosen

B,C ∈ L∞ such that B � C, we have that B+ρA(B), C+ρA(C) ∈ A. Hence,

86



for every λ ∈ (0, 1), there exists E ∈ L∞+ such that Q(λB+(1−λ)C)
A (E > 0) > 0

and

λB + (1− λ)C + λρA(B) + (1− λ)ρA(C)− E ∈ A.

This implies that ρA(λB + (1− λ)C − E) ≤ λρA(B) + (1− λ)ρA(C). Then,

ρA(λB + (1− λ)C) = EQ(λB+(1−λ)C)
A [−λB − (1− λ)C]− αA(Q(λB+(1−λ)C)

A )

< EQ(λB+(1−λ)C)
A [−λB − (1− λ)C + E]− αA(Q(λB+(1−λ)C)

A )

≤ sup
Q∈MA

{EQ[−λB − (1− λ)C + E]− αA(Q)} = ρA(λB + (1− λ)C − E)

≤ λρA(B) + (1− λ)ρA(C).

On the other hand, if for every B,C ∈ A such that B � C and every

λ ∈ (0, 1) we have that

ρA(λB + (1− λ)C) < λρA(B) + (1− λ)ρA(C),

it is enough to consider as the corresponding E the positive real number

−ρA(λB + (1− λ)C), for which λB + (1− λ)C − E ∈ A.

Under the assumption that the acceptance set A is risk-strictly convex,

we can say a bit more about the effective domain of the penalty function of

the induced risk measure, MA.

Proposition 5.2.6. If an acceptance set A is weak-*closed and risk-strict

convex, then MA ⊆Me.
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Proof. Assume that there exists B ∈ L∞ such that Q(B)
A /∈ Me, i.e., there

exists a measurable set A ∈ F such that P(A) > 0 and Q(B)
A (A) = 0. From the

equation

αA(Q(B)
A ) = sup

C∈L∞
{EQ(B)

A [−C]− ρA(C)},

which follows from the definition of αA, we get that

ρA(B + k1A) ≥ ρA(B),

for all k ∈ R. Furthermore, the monotonicity of ρA implies that ρA(B+k1A) =

ρA(B) for all k ∈ R+. By the risk-strictness assumption, the latter equality

yields that B + k1A ∼ B for every k ∈ R+, i.e., k1A ∼ 0, i.e., there exist

x ∈ R and h ∈ H such that k1A = kx + (kh · S)T ∈ R. Again by the

equality ρA(B + k1A) = ρA(B) and Corollary 5.2.2 we get that x = 0, and

hence 1A = (h · S)T , which contradicts the non-arbitrage assumption.

We recall the definition of the sensitivity of a risk measure, given in

[37], page 173.

Definition 5.2.7. A risk measure ρ is called sensitive if ρ(−B) > ρ(0) for

every B ∈ L∞+ \{0}.

The fact that the minimizers of the penalty function αA(·), belong

in Pe(P) implies that the risk measure ρA(·) is sensitive. Indeed, from the

characterization (5.2.1),

ρA(−B) ≥ EQ(0)
A [B]− αA(Q(0)

A ) = EQ(0)
A [B] > 0.
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Similarly, we get that ρA(B) < 0.

Another direct consequence for a risk-strictly convex acceptance set is

the following proposition.

Proposition 5.2.8. Let B ∈ L∞ such that B /∈ R. Let ρA be the risk measure

of a weak-*closed, risk-strictly convex acceptance set A. Then,

ρA(B) + ρA(−B) > 0.

In particular, A ∩ (−A) = X(0) ∩ R.

Proof. For any such B, ρA(B) +B ∈ A and ρA(−B)−B ∈ A. By assumption

(since 2B /∈ R), there exists E ∈ L∞+ \{0} such that

1

2
(ρA(B) + ρA(−B))− E ∈ A.

Hence, 1
2
(ρA(B) + ρA(−B))− ρA(−E) ≥ 0 and by monotonicity of ρA, we get

that ρA(B) + ρA(−B) > 0.

The last statement then follows by Corollary 5.2.2.

5.3 A Generalized Notion of Agreement

The aim of this section is to generalize the notion of mutually agreeable

claims in the following sense:

• The number of agents is I ≥ 2.

• A vector of claims is considered instead of a single one.
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• The agents value claims using acceptance sets that satisfy axioms Ax1 -

Ax4.

• The agents may have access to different markets.

Before we state the corresponding definition, we introduce some further

notation.

We suppose that each agent i has access to a sub-market Si ⊆ S, i.e.,

she is allowed to trade (has access to) a vector of di + 1 ≤ d+ 1 traded assets

(S
(0)
t ;S

(i1)
t , . . . , S

(idi )

t )t∈[0,T ], where ik ∈ {1, 2, ..., d} and ik 6= il for k 6= l. Note

that we assume that the numéraire S(0) is accessible to each agent. In order to

take the whole market into account, we suppose that S =
⋃I
i=1 Si. Also note

that the Assumption 5.1.1 implies that

Mi
a = {Q� P : Si is a local martingale under Q} 6= ∅

∀i = 1, 2, ..., I, since Ma ⊆ Mi
a. We, then, endow all agents with the corre-

sponding to Si set of admissible terminal gains Xi (terminal value of uniformly

bounded from below gain processes) and an acceptance set Ãi which satisfies

the axioms Ax1 -Ax4. The induced risk measure ρAi is denoted by ρi and Mi

stands for the effective domain of the corresponding penalty function αi, i.e.,

the set MAi , for every i = 1, 2, ..., I.

If we further assume that the intersection Ãi ∩ L∞, denoted by Ai, is

a weak-*closed set, the induced risk measure ρi = ρAi admits the following
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robust representation

ρi(B) = sup
Q∈Mi

{EQ[−B]− αi(Q)}, (5.3.1)

where Mi ⊆Mi
a for all i.

We use the notation Q(B)
i for the attained supremum in (5.3.1) for

B ∈ L∞ and for every i = 1, 2, ..., I.

For vector of claims in (L∞)n, n ∈ N, we call a matrix (ai,k) = a ∈ RI×n

an n-allocation or simply an allocation, if
∑I

i=1 ai,k = 0 for all k = 1, 2, ..., n.

For convenience, we denote by ai the vector (ai,k)
n
k=1 ∈ Rn (the number of

claims agent i holds according the allocation a). The set of allocations is

denoted by F, i.e.,

F = {a ∈ RI×n such that
I∑
i=1

ai = (0, 0, ..., 0)}. (5.3.2)

We are, now, ready to give a general definition of the notion of agree-

ment.

Definition 5.3.1. The pair (B,a) ∈ (L∞)n × F of a vector of claims and an

allocation is called mutually agreeable if there exists a (price) vector p ∈ Rn

such that ai ·B − ai · p ∈ Ai, for all i = 1, 2, ..., I.

Intuitively, if a pair (B,a) is mutually agreeable, all agents are willing

to allocate the claims in B according to the allocation a at price p, where

“willing” means that the investment position ai ·B − ai · p does not increase

the i−agent’s risk.
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Remark 5.3.2. The Definition 3.1.1 of mutually agreeable claims can be in-

terpreted as a special case of the above definition, where I = 2, n = 1,

Ai = Aγi(Ei) and a = (−1, 1).

For every allocation a, we define the set

Ga = {B ∈ (L∞)n : (B,a) is mutually agreeable}.

Note that G−a = −Ga.

We also set R̂a = {B ∈ (L∞)n : ai ·B ∈ Ri, ∀i = 1, 2, ..., I} for a ∈ F.

In the spirit of Proposition 3.1.6, we state the following properties of the set

Ga.

Proposition 5.3.3. For every allocation a ∈ F, Ga is convex. If, also, Ai is

weak*-closed and risk-strictly convex for every i = 1, 2, ..., I, then

Ga ∩ (−Ga) ⊆ R̂a,

for all a ∈ F.

Proof. The convexity follows directly from the convexity of Ai’s. For the

second statement, suppose that B ∈ Ga ∩ (−Ga), i.e., there exist p, p̂ ∈ Rn

such that ai ·B−ai ·p ∈ Ai and −ai ·B+ai · p̂ ∈ Ai, for all i. The convexity

of Ai then implies that 1
2
ai · (p̂− p) ∈ Ai, which yields that ai · (p̂− p) ≤ 0,

for all i = 1, 2, ..., I. Since
∑I

i=1 ai = 0, we conclude that for every agent

ai · p = ai · p̂. From this equality and the acceptance conditions above, we

get that ρi(ai ·B) ≤ −ai · p and also ρi(−ai ·B) ≤ ai · p for all i. But in
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this case ρi(ai ·B) + ρi(−ai ·B) ≤ 0, which means (thanks to the risk-strict

convexity of ρi) that ai ·B ∈ Ri for all i, i.e., B ∈ R̂a.

Another useful notion in this concept is the inf-convolution of risk mea-

sures, first introduced in [9].

Definition 5.3.4. The inf-convolution of the risk measures ρ1, ρ2, ..., ρI is the

mapping ♦ρ : L∞ → R ∪ {−∞}, defined by

♦ρ(C) = inf
B1,B2,...,BI−1∈L∞

{
I−1∑
i=1

ρi(Bi) + ρI(C − (B1 +B2 + ....+BI−1))

}
,

(5.3.3)

for C ∈ L∞.

In what follows, we denote by M the intersection
⋂I
i=1 Mi and we im-

pose the following assumption.

Assumption 5.3.5. M 6= ∅.

Since S =
⋃I
i=1 Si we have that

⋂I
i=1 Mi

e = Me. Hence, if Ai’s are

risk-strictly convex, it holds that M ⊆ Me and, hence, Assumption 5.3.5 is a

stronger version of Assumption 5.1.1.

The following proposition is a slight generalization of Theorem 3.6 in

[10], where the case of I = 2 is addressed. The proof when I ≥ 2 is similar

and, hence, omitted.

Proposition 5.3.6. Under Assumption 5.3.5 and if Ai is weak-*closed for

every i = 1, 2, ..., I, the map ♦ρ : L∞ → R is a convex risk measure with

penalty function h(Q) =
∑I

i=1 αi(Q) whose effective domain is M.
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Definition 5.3.7. We say that the agents are in Pareto-optimal condition or

in Pareto equilibrium if ♦ρ(0) = 0.

In other words, the Pareto-optimal condition implies that there is no

transaction that can strictly decrease the sum of the agent’s risk measures,

i.e., there is no transaction that strictly improves their risk exposure.

Below, we state a characterization of the Pareto-optimal condition in

terms of the minimizers of the penalty functions αi.

Proposition 5.3.8. The agents are in a Pareto-optimal condition if and only

if Q(0)
i = Q(0)

j for every i, j = 1, 2, ..., I.

Proof. We observe that

♦ρ(0) = sup
Q∈M
{−h(Q)}

= sup
Q∈M
{−

I∑
i=1

αi(Q)} = − inf
Q∈M
{

I∑
i=1

αi(Q)} ≤ 0.

and the equality holds if and only if αi’s have a common minimizer.

The following proposition states that if the agents are in Pareto-optimal

condition, i.e., when ♦ρ(0) = 0, the risk-strict convexity assumption implies

that the transaction of any non-replicable claim results in increased risk for at

least one of the agents involved in this transaction.

Proposition 5.3.9. Assume that Ai are weak-*closed and risk-strictly convex

for all i = 1, 2, .., I and suppose that ♦ρ(0) = 0. For any claims B1, B2, ..., BI−1
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in L∞, it holds that

I−1∑
i=1

ρi(Bi) + ρI(−
I−1∑
i=1

Bi) = 0

if and only if Bi ∈ Ri for all i = 1, 2, ..., I, where BI = −
∑I−1

i=1 Bi.

Proof. Assume that there exists k ∈ {1, 2, ..., I} such that Bk /∈ Rk. Then,

by the strict convexity assumption, ∀λ ∈ (0, 1) there exists E ∈ L∞+ \{0} such

that ρk(λBk − E) ≤ λρk(Bk). This implies that ρk(λBk) < λρk(Bk). Note

that ρi(λBi)− λρi(Bi) ≤ 0, ∀i = 1, 2, ..., I. Hence,

I∑
i=1

ρi(λBi) < λ
I∑
i=1

ρi(Bi) = 0,

which contradicts the assumption ♦ρ(0) = 0.

On the other hand, if Bi ∈ Ri for all i = 1, 2, ..., I, then

ρi(Bi) = −ρi(−Bi).

Hence, if
∑I

i=1 ρi(Bi) > 0, we have that
∑I

i=1 ρi(−Bi) < 0, which also contra-

dicts the assumption ♦ρ(0) = 0.

Corollary 5.3.10. Suppose that Q(0)
i = Q(0)

j for every i, j = 1, 2, ..., I. Then,

for B ∈ (L∞)n and a ∈ F, if B ∈ Ga, it holds that ai · B ∈ Ri, for every

i = 1, 2, ..., I.

Proof. The fact that B ∈ Ga yields that there exists a price vector p such

that ai · B − ai · p ∈ Ai, for all i. This implies that
∑I

i=1 ρi(ai · B) ≤ 0,

which by the hypothesis and Proposition 5.3.9 yields that ai ·B ∈ Ri for all

i = 1, 2, ..., I.
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Example 5.3.11. Suppose that we adopt the exponential utility setup of

Chapter 3 for every agent i, where by γi and Ei we denote the agents’ risk

aversion coefficients and random endowments, respectively. Then, we can

conclude by following the same lines as in the proof of Proposition 3.3.5 that

exponential utility maximizers are in a Pareto-optimal condition if and only if

γi
γj

Ei ∼ Ej for all i, j = 1, 2, ..., I.

5.4 The Partial Equilibrium Price Allocation

Having introduced the setup of I agents, their acceptance sets and sets

of admissible terminal gains, we can establish a partial equilibrium pricing for

a fixed vector of claimsB ∈ (L∞)n. We start with the demand correspondence

for B of the agent i.

5.4.1 The demand function

For every agent i, and for the fixed vector B ∈ (L∞)n, we give the

following generalization of Definition 4.1.1.

Definition 5.4.1. For the agent i, i = 1, 2, ..., I, the demand correspondence

of the vector of claims B, Zi : Rn → 2R̄n is defined by

Zi(p) = argmin
a∈R̄n

{ρi(a ·B − a · p)} = argmin
a∈R̄n

{ρi(a ·B) + a · p} (5.4.1)

In other words, Zi(p) gives the vectors of units of B that the agent i is

willing (in terms of risk minimization) to buy/sell at price p. From Definition

5.4.1, it follows that the differentiability of the mapping a 7→ ρi(a ·B), a ∈ Rn
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is an important issue. For this, we need the following definition, which is a

weaker version of the risk-strict convexity.

Definition 5.4.2. Let A be a weak-*closed acceptance set and B ∈ (L∞)n

a vector of claims. We call A strictly convex with respect to B if for every

λ ∈ (0, 1) and every a, δ ∈ Rn and m, k ∈ R such that a 6= δ and a ·

B + m, δ · B + k ∈ A, there exists a random variable E ∈ L∞+ , such that

Q((λa+(1−λ)δ)·B)
A (E > 0) > 0 and

λ(a ·B +m) + (1− λ)(δ ·B + k)− E ∈ A.

Following the proof of Proposition 5.2.5, we can show that an accep-

tance set Ai is strictly convex with respect to B if and only if the function

Rn 3 a 7→ ρi(a ·B) ∈ R is strictly convex. In fact, it is also differentiable in

Rn. For the proof of this argument, we need the following lemma.

Lemma 5.4.3. Let i ∈ {1, 2, ..., I} and B = (B1, B2, ..., Bn) ∈ (L∞)n be a

vector of claims for which there is no a ∈ Rn such that a ·B ∈ Ri. If Ai is

weak-*closed and strictly convex with respect to B, it holds that

lim
ak→+∞

EQ(a·B)
i [−Bk] = sup

Q∈Mi

{EQ[−Bk]} = sup
δ∈Rn
{EQ(δ·B)

i [−Bk]} (5.4.2)

and

lim
ak→−∞

EQ(a·B)
i [−Bk] = inf

Q∈Mi

{EQ[−Bk]} = inf
δ∈Rn
{EQ(δ·B)

i [−Bk]}, (5.4.3)

for all a = (a1, a2, ..., an) ∈ Rn and k = 1, 2, ..., n.
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Proof. Without loss of generality, we assume that k = 1. Note that by con-

vexity of ρi, the ratio ρi(a·B)
a1

is an increasing function of a1 > 0 and, hence, its

limit as a1 → +∞ exists (in R̄). We claim that

lim
a1→+∞

ρi(a ·B)

a1

≥ sup
Q∈Mi

{EQ[−B1]}. (5.4.4)

Indeed,

lim
a1→+∞

ρi(a ·B)

a1

= sup
a1∈R+

ρi(a ·B)

a1

= sup
a1∈R+

sup
Q∈Mi

{
EQ[−(a ·B)]

a1

− αi(Q)

a1

}
= sup

Q∈Mi

sup
a1∈R+

{
EQ[−(a ·B)]

a1

− αi(Q)

a1

}
= sup

Q∈Mi

sup
a1∈R+

{
EQ[−B1] +

EQ[−
∑n

j=2 aiBi]− αi(Q)

a1

}

≥ sup
Q∈Mi

sup
a1∈R+

{
EQ[−B1] +

−
∑n

j=2 |ai|||Bi||∞ − αi(Q)

a1

}
= sup

Q∈Mi

{EQ[−B1]}.

Also, from the inequality ρi(a·B)
a1

+ 1
a1
EQ(a·B)

i [(a ·B)] ≤ 0, which holds for all

(a2, a3, ..., an) ∈ Rn−1 and a1 > 0, we get that

ρi(a ·B)

a1

≤ EQ(a·B)
i [−B1] +

1

a1

EQ(a·B)
i [−

n∑
j=2

aiBi]

≤ EQ(a·B)
i [−B1] +

∑n
j=2 |ai|||Bi||∞

a1

.

Hence, lim
a1→+∞

ρi(a·B)
a1
≤ lim

a1→+∞
EQ(a·B)

i [−B1]. Hence, by (5.4.4) we get that

lim
a1→+∞

EQ(a·B)
i [−B1] = sup

Q∈Mi

{EQ[−B1]}.
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It is left to recall that Q(δ·B)
i ∈Mi for all δ ∈ Rn.

The proof of the equality (5.4.3) follows the same lines.

For every vector of claims B ∈ (L∞)n and for every agent i, we define

the set

Pi(B) = {EQ(a·B)
i [B] : a ∈ Rn} ⊆ Rn. (5.4.5)

Note that Lemma 5.4.3 implies, in particular, that sup{Pi(B)} = sup
Q∈Mi

{EQ[−B]},

for every B ∈ L∞.

Proposition 5.4.4. Let i ∈ {1, 2, ..., I} and B = (B1, B2, ..., Bn) ∈ (L∞)n

be a vector of claims for which there is no a ∈ Rn such that a · B ∈ Ri.

If Ai is weak-*closed and strictly convex with respect to B, then the function

a 7→ ρi(a ·B) is differentiable for every a ∈ Rn and ∇ρi(a ·B) = EQ(a·B)
i [−B],

i.e.,

∂

∂ak
ρi(a ·B) = EQ(a·B)

i [−Bk], (5.4.6)

for every k = 1, 2, ..., n and a ∈ Rn.

Proof. According to Proposition I.5.3 in [33], we need to show that EQ(a·B)
i [−B]

is the unique subgradient of the function δ 3 Rn 7→ ρi(δ · B) ∈ R at a =

(a1, a2, ..., an) ∈ Rn, i.e., if for some a∗ = (a∗1, a
∗
2, ..., a

∗
n) ∈ Rn it holds that

ρi(δ ·B) ≥ ρi(a ·B)− a∗ · (a− δ), ∀δ ∈ Rn, (5.4.7)

then a∗ = EQ(a·B)
i [−B].
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Assume that a∗ satisfies (5.4.7) and a∗ 6= EQ(a·B)
i [−B]. Suppose, first,

that −a∗ ∈ Pi(B), i.e., that there exists δ̂ ∈ Rn such that δ̂ 6= a and a∗ =

EQ(δ̂·B)
i [−B]. For δ = δ̂ in (5.4.7) we get

ρi(δ̂ ·B) + EQ(δ̂·B)
i [δ̂ ·B] ≥ ρi(a ·B) + EQ(δ̂·B)

i [a ·B].

Note, however, that

ρi(a ·B) ≥ EQ(δ̂·B)
i [−a ·B]− αi(Q(δ̂·B)

i )

= EQ(δ̂·B)
i [−a ·B] + ρi(δ̂ ·B) + EQ(δ̂·B)

i [δ̂ ·B],

and the equality holds if and only if the measure Q(δ̂·B)
i is a maximizer of the

difference EQ[−a ·B]− αi(Q). But this implies that

1

2
(ρi(a ·B) + ρi(δ̂ ·B)) = ρi

(
(δ̂ + a) ·B

2

)
,

which contradicts the assumption of strict convexity.

It is left to show that if a∗ ∈ Rn satisfies (5.4.7), then −a∗ ∈ Pi(B).

We argue by contradiction and assume that this is not the case. By Lemma

5.4.3 this means that there exists l = 1, 2, ..., n such that a∗l ≥ sup
Q∈Mi

{EQ[−Bl]}

or a∗l ≤ inf
Q∈Mi

{EQ[−Bl]}. Without loss of generality, suppose that the former

holds and that l = 1. Then, applying (5.4.7) for δ = ã = (a1 + ε, a2, a3, ..., an),

where ε > 0, yields that

ρi(ã ·B) + ε inf
Q∈Mi

{EQ[B1]} ≥ ρi(a ·B).

But this contradicts that

ρi(a ·B) ≥ EQ(ã·B)
i [−a ·B]− αi(Q(ã·B)

i )

= ρi(ã ·B) + εEQ(ã·B)
i [B1] > ρi(ã ·B) + ε inf

Q∈Mi

{EQ[B1]}.
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This completes the proof.

Remark 5.4.5. If for B ∈ (L∞)n there is no a ∈ Rn such that a ·B ∈ Ri and if

Ai is strictly convex with respect to B, we can restrict ourselves only to prices

which belong to Pi(B), for the specification of the corresponding demand

Zi(p). This is because by its definition, the demand correspondence, Zi(p),

consists of the solutions, a, of the equation −∇ρi(a·B) = EQ(a·B)
i [B] = p. For

p ∈ Pi(B), the mapping Zi(p). In fact a function, i.e., Zi(p) is a singleton.

Indeed, if we assume that for some price vector p̂, there exist ζ̂, ζ̃ ∈ Rn such

that ζ̂ 6= ζ̃ and EQ(ζ̂·B)
[B] = EQ(ζ̃·B)

[B] = p̂, then

ρi(Zi(p̂) ·B) + Zi(p̂) · p̂ = ρi(ζ̂ ·B) + ζ̂ · p̂ = ρi(ζ̃ ·B) + ζ̃ · p̂.

Thanks to the strict convexity of ρi, for every λ ∈ (0, 1), we have that

ρi((λζ̂ + (1− λ)ζ̃) ·B) + (λζ̂ + (1− λ)ζ̃) · p̂ < ρi(Zi(p̂) ·B) + Zi(p̂) · p̂.

The last inequality contradicts the fact that

ρi(Zi(p̂) ·B) + Zi(p̂) · p̂ ≤ ρi(a ·B) + a ·B,

which holds for every a ∈ Rn.

Proposition 5.4.6. Let i ∈ {1, 2, ..., I} and B ∈ (L∞)n be a vector of claims

for which there is no a ∈ Rn such that a ·B ∈ Ri. If Ai is weak-*closed and

strictly convex with respect to B, then the demand function Zi is continuous

in Pi(B) and satisfies the monotonicity property

(Zi(p1)− Zi(p2)) · (p1 − p2) < 0,

for every p1,p2 ∈ Pi(B) with p1 6= p2.
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Proof. The continuity is a direct application of the Berge’s Maximum Theorem

(see, for instance, Theorem 17.31 in [1]). From the definition of the demand

function, we have that

ρi(Zi(pj) ·B) + Zi(pj) · pj < ρi(a ·B) + a · pj

for every a ∈ Rn with a 6= Zi(pj), for j = 1, 2. Note also that Zi(p1) 6= Zi(p2)

since Zi(pj) is the solution â of the equation pj = EQ(â·B)
i [B]. Thus,

ρi(Zi(p1) ·B)− ρi(Zi(p2) ·B) + (Zi(p1)− Zi(p2)) · p1 < 0

and

ρi(Zi(p2) ·B)− ρi(Zi(p1) ·B)− (Zi(p1)− Zi(p2)) · p2 < 0

By adding the above inequalities we conclude.

5.4.2 The equilibrium pricing

Given our fixed vector of claims B, if its price is given by vector p, each

agent sells/buys the units of B that minimizes her risk. As in the classical

market clearing, we follow the ideas stated in Section 4.2 to define a partial

equilibrium price for B.

Definition 5.4.7. We say that the pair (p,a) ∈
⋂I
i=1 Pi(B) × F is a partial

equilibrium price allocation (PEPA), if ai = Zi(p) for every i, i.e.,

I∑
i=1

Zi(p) = (0, 0, ..., 0). (5.4.8)

In remainder of this chapter, we impose the following assumptions.
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Assumption 5.4.8. The acceptance set Ai is weak-*closed and strictly convex

with respect to B, for all i = 1, 2, ..., I.

Assumption 5.4.9. There is no δ ∈ RI \ {0} for which EQ[δ ·B] is constant

function of Q ∈M.

Remark 5.4.10. Assumption 5.4.9 implies, in particular, that for every i =

1, 2, ..., I, there is no δ ∈ Rn \ {0} such that δ · B ∈ X∞i . This means that

there is no δ ∈ Rn \ {0} such δ ·B ∈ Ri.

Remark 5.4.11. If Assumptions 5.4.8 and 5.4.9 hold true and the agents are

in Pareto optimal condition (i.e., Q(0)
i = Q(0)

j , ∀i, j), then the only PEPA is of

the form (p,0). To show this, we assume that there exists an a ∈ F\{0} such

that (p,a) is a PEPA. Then, ρi(ai ·B) +ai ·p ≤ 0 for all i. Therefore, by the

strict convexity of the risk measures for at least two agents the inequality is

strict. This implies that
∑I

i=1 ρi(ai ·B) < 0, which contradicts the assumption

of Pareto optimality. In other words, the notion of the PEPA is meaningful

only when the probability measures that minimize the penalty functions are

not the same for all the agents.

Theorem 5.4.12. For a vector of claims B ∈ (L∞)n satisfying Assumption

5.4.9 and under Assumptions 5.3.5 and 5.4.8, there exists a unique PEPA

(p̂, â) ∈
⋂I
i=1 Pi(B)× F.

Proof. We first define the strictly convex function f : R(I−1)×n → R by

f(a) = ρ1(a1 ·B) + ρ2(a2 ·B) + ...+ ρI−1(aI−1 ·B) + ρI((−
I−1∑
i=1

ai) ·B).
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If for some ã ∈ R(I−1)×n, we have that ∇f(ã) = 0, then ã is the unique

minimizer of f , for which ∇ρi(ãi · B) = ∇ρI(−
(∑I−1

i=1 ãi

)
· B), for every

i = 1, 2, ..., I − 1, where ãi denotes the vector (ãi,k)k=1,2,...,n. The latter means

that

EQ(ãi·B)
i [B] = EQ

(−(
∑I−1
i=1

ãi)·B)

I [B],

for every i = 1, 2, ..., I − 1. Then, for the price p̂ = EQ(ãi·B)
i [B], we have that

Zi(p̂) = ãi for every i = 1, 2, ..., I − 1 and ZI(p̂) = −
∑I−1

i=1 ãi.

In other words, if we denote by â the allocation whose rows are given

by âi = ãi, for i = 1, 2, ..., I−1 and âI = −
∑I−1

i=1 ãi, the pair (p̂, â) is a partial

equilibrium price allocation. In fact, it is the unique one, since, if we assume

the existence of another PEPA (p̌, ǎ) 6= (p̂, â), we get that p̌ = EQ(ǎi·B)
i [B],

which in turn implies that ∇f(ǎ) = 0. The latter equation contradicts the

uniqueness of the minimizer of the function f .

Hence, it suffices to show that ∇f(a) has a root. Assume that this is

not the case. Then, by the continuity of f , we deduce that for, each m ∈ N,

there exists a(m) ∈ Dm = {a ∈ R(I−1)×n :
∑(I−1)n

k=1 |ak| ≤ m} such that

f(a(m)) ≤ f(a) for all a ∈ Dm. Furthermore, by the strict convexity of f it

follows that ||a(m)||1 = m. This means that, in order to reach a contradiction,

it is enough to establish

lim inf
m→∞

f(a(m))

m
> 0. (5.4.9)

(see e.g. Chapter 1 in [16]). Any sequence of N through which the lim inf in

(5.4.9) is achieved admits a further subsequence (mk)k∈N, for which a(mk) 1
mk
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converges to some a(0) ∈ R(I−1)×n with ||a(0)||1 = 1 (and in particular a
(mk)
i

converges to a
(0)
i for every i = 1, 2, ..., I − 1). We consider this subsequence

and, for each i, we have that

lim inf
k→∞

ρi(a
(k)
i ·B)

k
= lim

k→∞
ρ′i(k(a

(0)
i ·B)),

where ρ′i(β(a
(0)
i ·B)) denotes the derivative of the function β 7→ ρi((β(a

(0)
i ·B)))

for β ∈ R (which exists by Proposition 5.4.4). Indeed, by the convexity and

the Lipschitz continuity of ρi (see discussion after Remark B.0.4),

lim inf
k→∞

∣∣∣∣∣ρi(a(k)
i ·B)

k
− ρ′i(k(a

(0)
i ·B)

∣∣∣∣∣ = lim inf
k→∞

∣∣∣∣∣ρi(a(k)
i ·B)

k
− ρi(k(a

(0)
i ·B)

k

∣∣∣∣∣
≤ ||a(k)

i − a
(0)
i ||1||B||(L∞)d → 0.

Thus, it is left to show that

lim
k→∞

(
I−1∑
i=1

ρ′i(k(a
(0)
i ·B))

)
+ ρ′I

(
k(−

I−1∑
i=1

a
(0)
i ·B)

)
> 0.

Taking also Lemma 5.4.3 into account, we have that

lim
k→∞

ρ′i(k(a
(0)
i ·B)) = sup{Pi((−a(0)

i ·B))}.

Hence,

lim inf
k→∞

f(a(k))

k
=

I−1∑
i=1

sup
Q∈Mi

{EQ[−a(0)
i ·B]}+ sup

Q∈MI

{EQ[(
I−1∑
i=1

a
(0)
i ) ·B]}

≥
I−1∑
i=1

sup
Q∈M
{EQ[−a(0)

i ·B]}+ sup
Q∈M
{EQ[(

I−1∑
i=1

a
(0)
i ) ·B]}

≥ sup
Q∈M
{EQ[(−

I−1∑
i=1

a
(0)
i ) ·B]} − inf

Q∈M
EQ[(−

I−1∑
i=1

a
(0)
i ) ·B] > 0,

where the last strict inequality follows directly from Assumption 5.4.9.
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Remark 5.4.13. By the uniqueness of the minimizer â ∈ F of the function f ,

we get that any agent i who participates in the equilibrium (that is âi 6= 0)

enjoys a risk reduction (improvement), i.e, ρi(âi ·B − âi · p̂) < 0, where p̂ is

the partial equilibrium price (PEP).

Remark 5.4.14. It follows from Theorem 5.4.12 that the PEPA on a vector of

claims B is of the form (p̂,0), if and only if EQ(0)
i [B] = EQ(0)

j [B] for every

i, j ∈ {1, 2, ..., n}. In other words, for every vector of claims B ∈ (L∞)n for

which the hypotheses of Theorem 5.4.12 hold and EQ(0)
i [B] 6= EQ(0)

j [B], for

some i 6= j, there exists an allocation â ∈ F such that â 6= 0 and B ∈ Gâ.
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Appendix A

The Dynamic Version of the Indifference Price

In addition to the study of the indifference prices ν(w)(B; γ|E) and

ν(b)(B; γ|E) defined at time t = 0, one can restrict attention to any subinterval

[t, T ] of [0, T ], and consider the filtered probability space (Ω,F, (Fu)u∈[t,T ],P)

and the traded-assets process (Su)u∈[t,T ]. To keep this text self-contained,

we state the definition of the dynamic version of the (conditional) indifference

price, together with some results used in the previous chapters. In Section A.2,

we define the residual risk process of the conditional indifference price valua-

tion and state a characterization of it in the case of continuous filtrations. In

Section A.3, we give a brief discussion on the class of BMO-martingales.

A.1 The Conditional Indifference Price Process

The value function defined in (2.1.3) is the indirect utility of the agent

at time t = 0. In a similar way, one can define the agent’s value function

at any time t ∈ [0, T ]. More precisely, for every claim payoff B ∈ L∞, any

random endowment E ∈ L∞, any risk aversion coefficient γ > 0 and any time
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t ∈ [0, T ] we define the indirect utility process as

uγ(B, t|E) = esssup
ϑ∈Θ

E
[
U

(∫ T

t

ϑudSu + E +B

) ∣∣∣Ft]
= esssup

ϑ∈Θ
E
[
− exp

(
−γ
(∫ T

t

ϑudSu + E +B

)) ∣∣∣Ft]. (A.1.1)

Similarly as in the static case, the indirect utility process induces an

acceptance set at any time t ∈ [0, T ],

Aγ(E, t) = {B ∈ L∞ : uγ(B, t|E) ≥ uγ(0, t|E)} (A.1.2)

and its strict version

A◦γ(E, t) = {B ∈ L∞ : uγ(B, t|E) > uγ(0, t|E)} . (A.1.3)

Therefore, the (conditional) indifference price of a contingent claim at time t,

ν
(w)
t (B; γ|E) is given by

ν
(w)
t (B; γ|E) = inf

{
p ∈ L0(Ft) : p−B ∈ Aγ(E, t)

}
, (A.1.4)

for any t ∈ [0, T ]. In other words, ν
(w)
t (B; γ|E) is the minimum amount at

which the agent with risk aversion coefficient γ and random endowment E is

willing to sell at time t a claim with payoff B. Equivalently, we can define

ν
(w)
t (B; γ|E) as the P−a.s. unique solution of the equation

esssup
ϑ∈Θ

E
[
− exp

(
− γ
(
E +

∫ T

t

ϑu dSu + ν
(w)
t (B; γ|E)−B

))∣∣∣Ft]
= esssup

ϑ∈Θ
E
[
− exp

(
− γ
(
E +

∫ T

t

ϑu dSu
))∣∣∣Ft]. (A.1.5)
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One can show, using the standard dynamic-programming method (see e.g.,

[62]) that (ν
(w)
t (B; γ|E))t∈[0,T ] admits a cádlág modification. The cádlág process

(ν
(w)
t (B; γ|E))t∈[0,T ] is called the writer’s conditional indifference price process

for the claim B.

A natural analogue corresponding to the buyer’s side can be introduced

in a similar fashion. Namely, the conditional buyer’s indifference price process

of claim B, (ν
(b)
t (B; γ|E))t∈[0,T ], is defined as the cádlág modification of the

P−a.s. unique solution of the equation

esssup
ϑ∈Θ

E
[
− exp

(
− γ
(
E +

∫ T

t

ϑu dSu − ν(b)
t (B; γ|E) +B

))∣∣∣Ft]
= esssup

ϑ∈Θ
E
[
− exp

(
− γ
(
E +

∫ T

t

ϑu dSu
))∣∣∣Ft]. (A.1.6)

In other words, ν
(b)
t (B; γ|E) is the maximum amount at which the agent with

risk aversion coefficient γ and random endowment E is willing to buy at time

t a contingent claim with payoff B.

Below, we state some properties of the process (ν
(w)
t (B; γ|E))t∈[0,T ], for

the proof of which we refer the reader to [62] (see also Proposition 2.2.2).

Proposition A.1.1. For fixed E ∈ L∞, γ > 0 and t ∈ [0, T ], the mapping

B 7→ ν
(w)
t (B; γ|E) satisfies the following properties

1. It is increasing, i.e., for every B,C ∈ L∞ such that B ≤ C, P−a.s.,

then ν
(w)
t (B; γ|E) ≤ ν

(w)
t (C; γ|E), P−a.s..
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2. It is Ft−convex, i.e., for every B,C ∈ L∞ and λ ∈ L∞(Ft), such that

λ ∈ [0, 1], ν
(w)
t (λB+(1−λ)C; γ|E) ≤ λν

(w)
t (B; γ|E)+(1−λ)ν

(w)
t (C; γ|E),

P−a.s..

3. It is replication-invariant, i.e., for every ϑ ∈ Θ, D ∈ L∞(Ft) and B ∈

L∞, ν
(w)
t (B +D +

∫ T
t
ϑudSu; γ|E) = ν

(w)
t (B; γ|E) +D, P−a.s..

4. It is time-consistent, i.e., for all stopping times σ, τ ∈ [0, T ] such that

σ ≤ τ , v
(w)
σ (B|E; γ) = v

(w)
σ

(
v

(w)
τ (B|E; γ)|E; γ

)
, P−a.s..

A.2 The Residual Risk Process

Having defined the dynamic versions of the indifference price processes,

(ν
(b)
t (B; γ|E))t∈[0,T ] and (ν

(w)
t (B; γ|E))t∈[0,T ], one can extent the notion of the

residual risk introduced in Section 2.3, to the dynamic setting. More precisely,

the writer’s residual risk process of a claim B ∈ L∞, (R
(w)
t (B; γ|E))t∈[0,T ] is

defined by

R
(w)
t (B; γ|E) = ν

(w)
t (B; γ|E)− ν(w)(B; γ|E)−

∫ t

0

ϑ(B|E)
u dSu,

(note that R
(w)
T (B; γ|E) = R(w)(B; γ|E)).

We can define the corresponding buyer’s residual risk process by

R
(b)
t (B; γ|E) = R

(w)
t (−B; γ|E).

It is straightforward that

R
(w)
t (B; γ|E) = R

(w)
t (B − E; γ)−R(w)

t (−E; γ), t ∈ [0, T ], (A.2.1)
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where R
(w)
t (B; γ) stands for R

(w)
t (B; γ|0). It is, also, clear from the discussion

in Section A.1 that the processes (R
(w)
t (B; γ|E))t∈[0,T ] and (R

(b)
t (B; γ|E))t∈[0,T ]

admit cádlág modifications.

It has been shown in [62] (see Theorem 13) that when F is continuous,

the residual risk process admits a representation in terms of a martingale

orthogonal to S. Below, we state the straightforward extension of this result

to the conditional case.

Theorem A.2.1. ([62])

Suppose that the filtration F is continuous, and let the process (R
(w)
t (B; γ|E))t∈[0,T ],

defined in (A.2.1). Then, there exists a process (L
(w)
t (B; γ|E))t∈[0,T ] such that

1. (L
(w)
t (B; γ|E))t∈[0,T ] is a Q(−γE)−martingale in the space BMO(Q(−γE))

2. R
(w)
t (B; γ|E) = L

(w)
t (B; γ|E)− γ

2
〈L(w)(B; γ|E)〉t.

When E ∼ 0, the family {L(w)
t (B; γ)}γ>0 (where L

(w)
t (B; γ) denotes the pro-

cess L
(w)
t (B; γ|0)) admits a limit L

(w)
t (B; 0), as γ ↘ 0, in BMO(Q(0)) sense.

The process L
(w)
t (B; 0) can be identified as a term in the Kunita-Watanabe

decomposition

Bt = EQ(0)

[B] +

∫ t

0

ϑ̂
(B)

u dSu + L
(w)
t (B; 0), t ∈ [0, T ], (A.2.2)

of the Q(0)−martingale Bt = EQ(0)
[B|Ft], where ϑ̂

(B)
is an S−integrable pre-

dictable process for which (ϑ̂
(B)
·S) is a Q(0)−square integrable martingale. In

particular, L(w)(B; 0) is strongly orthogonal to any Q(0)−local martingale of

the form (ϑ · S), ϑ ∈ L(S).
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A.3 The BMO Martingales

To facilitate the exposition, we state in this section the definition of

the class of Bounded Mean Oscillation-martingales, usually refereed as BMO-

martingales, which are mentioned in Sections 2.4, 3.4 and A.2. For a detailed

review on this class, we refer the reader to [56].

Consider the probability space (Ω,F,F,Q), where F = (Ft)t∈[0,T ] is a

filtration that satisfies the usual conditions. Let (Mt)t∈[0,T ] be a uniformly

integrable Q−martingale with respect to Ft, with M0 = 0. Then, we define

the norm

‖M‖BMO(Q) = sup
τ

∥∥∥EQ
[
|MT −Mτ−|

∣∣∣Fτ] ∥∥∥
∞

(A.3.1)

where the supremum is taken over all stopping times τ and || · ||∞ stands for

the L∞(Ω,F,Q) norm.

Definition A.3.1. A uniformly integrable Q−martingale (Mt)t∈[0,T ], with

M0 = 0, belongs in the BMO(Q) class if ‖M‖BMO(Q) <∞.

For the proof of following theorem, which is used in the proof of Lemma

2.4.4, we refer the reader to [56], page 28.

Theorem A.3.2. For p ∈ R such that 1 < p < ∞, there exists a positive

constant Cp such that for any uniformly integrable Q−martingale (Mt)t∈[0,T ],

‖M‖BMO(Q) ≤ sup
τ

∥∥∥EQ
[
|MT −Mτ−|p

∣∣∣Fτ]1/p ∥∥∥
∞
≤ Cp‖M‖BMO(Q)

where the supremum is taken under all stopping times.
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Appendix B

A Short Survey of Convex Risk Measures

A risk measure is a quantitative way to assess the risk involved in a

financial position. If any investment is described by its discounted net payoff

at the end of a certain time period, a risk measure maps any such position to

the real line with the goal to give an assessment of its riskyness. Clearly, such

a map should satisfy a number of axioms in order to be a “rational” measure

of risk.

The axiomatic definition of such a measure of risk was introduced in [5]

and [6], where the notion of the coherent risk measure (see Remark B.0.4) was

defined for a finite Ω and its characterization, usually called robust represen-

tation, was established. Their results have been generalized for a larger family

of probability models in [28] (see also [27] for a related overview). In [36] (see

also Chapter 4 of [37]), the more general notion of convex risk measures was

introduced and the corresponding robust representation was provided. More

recently, the dynamic versions of risk measures have been developed by many

authors (see among others, [7], [21], [32], [40], [68]) together with discussions

on related issues such as time consistency (see [21] and [57]) and equilibrium

arguments (see [8], [9], [11], [18], [34], [35], [43] and [52]). The concept of a
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risk measure in a financial market setting, discussed in Chapter 5, was first

analyzed in [19] and [36] (see also Section 4.8 in [37]) and, then, extensively

developed for a variety of financial models (see among others [41], [57], [67],

[76]).

In this chapter, we state the axiomatic definition of risk measures to-

gether with some of their main properties used in Chapter 5. In order to be

consistent with the main body of this text, we fix a time horizon and consider

L∞(Ω,F,P) (as usually denoted by L∞) as the set of the investment payoffs.

Similar results as the ones stated below can also be obtained for larger payoff

spaces (see, e.g., [20], [22]).

Definition B.0.3. A mapping ρ : L∞ → R is called a convex risk measure

or convex capital requirement , if it satisfies the following conditions, for every

B,C ∈ L∞:

1. Monotonicity, i.e., if B ≤ C, P−a.s., then ρ(B) ≥ ρ(C).

2. Cash invariance or translation invariance, i.e., for every m ∈ R,

ρ(B +m) = ρ(B)−m.

3. Convexity, i.e., for every λ ∈ [0, 1],

ρ(λB + (1− λ)C) ≤ λρ(B) + (1− λ)ρ(C).

Remark B.0.4. In the case where a convex risk measure is also positively ho-

mogenous, that is for all λ > 0, and B ∈ L∞, ρ(λB) = λρ(B), then ρ is called

a coherent risk measure.
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The axiomatic properties in Definition B.0.3 are the minimal ones that

any map whose aim is to qualify the risk involved in investments should satisfy.

The monotonicity simply reflects the fact that investments with higher payoff

should not increase the risk. Similarly, the convexity states that the diversi-

fication of investment positions results in less or equal risk. The property of

cash invariance, and in particular the fact that ρ(B + ρ(B)) = 0, implies that

ρ(B) is in fact the amount of money which, if added to the payoff B, makes

the risk of the position equal to zero. This property, also, means that ρ(B) is

measured in currency units.

A straightforward consequence of monotonicity and cash invariance

property is that ρ is a Lipschitz continuous function with respect to the es-

sential norm || · ||L∞ . Indeed, for every B,C ∈ L∞, B ≤ C + ||B − C||L∞ and

hence ρ(C)− ρ(B) ≤ ||B − C||L∞ .

The class of financial positions whose risk is non-positive are called

acceptable. In other words, any convex risk measure ρ induces the class Aρ,

defined as

Aρ = {B ∈ L∞ : ρ(B) ≤ 0} . (B.0.1)

Some properties of the acceptance set Aρ, which follows directly from

its definition, are stated below.

Proposition B.0.5. ([36])

Let ρ be a convex risk measure and Aρ be its induced acceptance set. Then the

following statements hold
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1. Aρ is monotone and convex.

2. For any B ∈ L∞, ρ(B) = inf {m ∈ R : m+B ∈ Aρ}.

If in addition ρ is coherent, then Aρ is a cone in L∞.

Remark B.0.6. Proposition B.0.5 (especially its second part) signifies that one

can consider a given non-empty, monotone and convex class A ⊆ L∞ as the set

of agent’s acceptable financial positions and, then, induce the corresponding

risk measure ρA by the formula

ρA(B) = inf {m ∈ R : m+B ∈ A} (B.0.2)

(see also (5.1.4)). As proven in Proposition 4.7 of [37], (B.0.2) holds if we

assume in addition that there exists a constant c, such that c ∈ A and that

for every m ∈ R+ and B ∈ L∞, the set

{λ ∈ [0, 1] : λm+ (1− λ)B ∈ A} is closed in [0, 1].

The dual representation of the convex map ρ is usually called robust

representation and is a way to characterize the class of convex risk measures

in terms of expectations and a penalty function. Below, we state this charac-

terization, which is established in Theorems 4.15 and 4.31 of [37].

Theorem B.0.7. ([36])

Let ρ be a lower semi-continuous (for the weak-*topology) convex risk measure

on L∞. Then ρ admits the following characterization

ρ(B) = sup
Q∈Pa

{
EQ[−B]− α(Q)

}
(B.0.3)
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for any B ∈ L∞, where Pa denotes the set of all absolutely continuous with

respect to P probability measures in (Ω,F) and α : Pa → R̄ is called penalty

function, given by α(Q) = sup
B∈Aρ

EQ[−B], for any Q ∈ Pa.

Remark B.0.8.

1. The penalty function α defined above is the minimum one, that is, if

there exists another map α̂ : Pa → R̄ for which (B.0.3) holds, then

α(Q) ≤ α̂(Q), for all Q ∈ Pa.

2. It can, also, been shown that the supremum in (B.0.3) is attained.

3. It follows by formula (B.0.1) that ρ is lower semi-continuous for the

weak-*topology if and only if A is weak-*closed.

Remark B.0.9. Representation (B.0.3) can also be understood as a structural

way to obtain a convex risk measure. Namely, (B.0.3) implies that B ∈ Aρ if

and only if EQ[B] ≥ −α(Q), for all Q ∈ Pa. In other words, for a given penalty

function α, a position is acceptable if the expectation of its payoff under any

probability measure absolutely continuous with respect to P is higher that the

level −α(Q).
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Watanabe. In Séminaire de Probabilités, XXVII, volume 1557 of Lecture

Notes in Mathematics, pages 30–32. Springer, Berlin, 1993.

[3] Michail Anthropelos, Nikolas E. Frangos, Stylianos Z. Xanthopoulos, and

Athanasios N. Yannacopoulos. On contingent claims pricing in incom-

plete markets: A risk sharing approach. Submitted for publication, 2008.

[4] Michail Anthropelos and Gordan Žitković. On agents’ agreement and
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[17] Hans Bühlmann and William S. Jewell. Optimal risk exchanges. Astin

Bulletin, 10:243–262, 1979.
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[34] Damir Filipović and Michael Kupper. Equilibrium prices for monetary

utility functions. Journal of International Journal of Applied and Theo-

retical Finance, 11:325–343.
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[36] Hans Föllmer and Alexander Schied. Convex measures of risk and trading

constraints. Finance and Stochastics, 6(4):429–447, 2002.
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