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ABSTRACT

Discount-rate variation is the central organizing question of current asset-pricing re-
search. I survey facts, theories, and applications. Previously, we thought returns were
unpredictable, with variation in price-dividend ratios due to variation in expected
cashflows. Now it seems all price-dividend variation corresponds to discount-rate
variation. We also thought that the cross-section of expected returns came from the
CAPM. Now we have a zoo of new factors. I categorize discount-rate theories based
on central ingredients and data sources. Incorporating discount-rate variation affects
finance applications, including portfolio theory, accounting, cost of capital, capital
structure, compensation, and macroeconomics.

ASSET PRICES SHOULD EQUAL expected discounted cashflows. Forty years ago,
Eugene Fama (1970) argued that the expected part, “testing market efficiency,”
provided the framework for organizing asset-pricing research in that era. I
argue that the “discounted” part better organizes our research today.

I start with facts: how discount rates vary over time and across assets. I turn
to theory: why discount rates vary. I attempt a categorization based on central
assumptions and links to data, analogous to Fama’s “weak,” “semi-strong,” and
“strong” forms of efficiency. Finally, I point to some applications, which I think
will be strongly influenced by our new understanding of discount rates. In each
case, I have more questions than answers. This paper is more an agenda than
a summary.

I. Time-Series Facts

A. Simple Dividend Yield Regression

Discount rates vary over time. (“Discount rate,” “risk premium,” and “ex-
pected return” are all the same thing here.) Start with a very simple regression
of returns on dividend yields,1 shown in Table I.

The 1-year regression forecast does not seem that important. Yes, the
t-statistic is “significant,” but there are lots of biases and fishing. The 9% R2 is
not impressive.

∗University of Chicago Booth School of Business, and NBER. I thank John Campbell, George
Constantnides, Doug Diamond, Gene Fama, Zhiguo He, Bryan Kelly, Juhani Linnanmaa, Toby
Moskowitz, Lubos Pastor, Monika Piazzesi, Amit Seru, Luis Viceira, Lu Zhang, and Guofu Zhou
for very helpful comments. I gratefully acknowledge research support from CRSP and outstanding
research assistance from Yoshio Nozawa.

1 Fama and French (1988).
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Table I
Return-Forecasting Regressions

The regression equation is Re
t→t+k = a + b × Dt/Pt + εt+k. The dependent variable Re

t→t+k is the
CRSP value-weighted return less the 3-month Treasury bill return. Data are annual, 1947–2009.
The 5-year regression t-statistic uses the Hansen–Hodrick (1980) correction. σ [Et(Re)] represents
the standard deviation of the fitted value, σ (b̂ × Dt/Pt).

Horizon k b t(b) R2 σ [Et(Re)] σ[Et(Re)]
E(Re)

1 year 3.8 (2.6) 0.09 5.46 0.76
5 years 20.6 (3.4) 0.28 29.3 0.62

In fact, this regression has huge economic significance. First, the coefficient
estimate is large. A one percentage point increase in dividend yield forecasts a
nearly four percentage point higher return. Prices rise by an additional three
percentage points.

Second, five and a half percentage point variation in expected returns is a
lot. A 6% equity premium was already a “puzzle.”2 The regression implies that
expected returns vary by at least as much as their puzzling level, as shown in
the last two columns of Table I.

By contrast, R2 is a poor measure of economic significance in this context.3

The economic question is, “How much do expected returns vary over time?”
There will always be lots of unforecastable return movement, so the variance
of ex post returns is not a very informative comparison for this question.

Third, the slope coefficients and R2 rise with horizon. Figure 1 plots each
year’s dividend yield along with the subsequent 7 years of returns, in order
to illustrate this point. Read the dividend yield as prices upside down: Prices
were low in 1980 and high in 2000. The picture then captures the central fact:
High prices, relative to dividends, have reliably preceded many years of poor
returns. Low prices have preceded high returns.

B. Present Values, Volatility, Bubbles, and Long-Run Returns

Long horizons are most interesting because they tie predictability to volatil-
ity, “bubbles,” and the nature of price movements. I make this connection via
the Campbell–Shiller (1988) approximate present value identity,

dpt ≈
k∑

j=1

ρ j−1rt+ j −
k∑

j=1

ρ j−1�dt+ j + ρkdpt+k, (1)

where dpt ≡ dt − pt = log(Dt/Pt), rt+1 ≡ log R, and ρ ≈ 0.96 is a constant of
approximation.

2 Mehra and Prescott (1985).
3 Campbell (1991) makes this point, noting that a perpetuity would have very low short-

run R2.
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Figure 1. Dividend yield and following 7-year return. The dividend yield is multiplied by
four. Both series use the CRSP value-weighted market index.

Now, consider regressions of weighted long-run returns and dividend growth
on dividend yields:

k∑
j=1

ρ j−1rt+ j = ar + b(k)
r dpt + εr

t+k, (2)

k∑
j=1

ρ j−1�dt+ j = ad + b(k)
d dpt + εd

t+k, (3)

dpt+k = adp + b(k)
dpdpt + ε

dp
t+k. (4)

The present value identity (1) implies that these long-run regression coeffi-
cients must add up to one,

1 ≈ b(k)
r − b(k)

�d + ρkb(k)
dp. (5)

To derive this relation, regress both sides of the identity (1) on dpt.
Equations (1) and (5) have an important message. If we lived in an i.i.d.

world, dividend yields would never vary in the first place. Expected future
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Table II
Long-Run Regression Coefficients

Table entries are long-run regression coefficients, for example, b(k)
r in

∑k
j=1ρj−1rt+j = a + b(k)

r
dpt + εr

t+k. See equations (2)–(4). Annual CRSP data, 1947–2009. “Direct” regression estimates
are calculated using 15-year ex post returns, dividend growth, and dividend yields as left-hand
variables. The “VAR” estimates infer long-run coefficients from 1-year coefficients, using estimates
in the right-hand panel of Table III. See the Appendix for details.

Coefficient

Method and Horizon b(k)
r b(k)

�d ρkb(k)
dp

Direct regression , k = 15 1.01 −0.11 −0.11
Implied by VAR, k = 15 1.05 0.27 0.22
VAR, k = ∞ 1.35 0.35 0.00

returns and dividend growth would never change. Since dividend yields vary,
they must forecast long-run returns, long-run dividend growth, or a “rational
bubble” of ever-higher prices.

The regression coefficients in (5) can be read as the fractions of dividend yield
variation attributed to each source. To see this interpretation more clearly,
multiply both sides of (5) by var(dpt), which gives

var(dpt) ≈ cov

⎡
⎣dpt,

k∑
j=1

ρ j−1rt+ j

⎤
⎦ − cov

⎡
⎣dpt,

k∑
j=1

ρ j−1�dt+ j

⎤
⎦ + ρkcov(dpt, dpt+k).

(6)

The empirical question is, how big is each source of variation? Table II
presents long-run regression coefficients, each calculated three ways.

The long-run return coefficients, shown in the first column, are all a bit larger
than 1.0. The dividend growth forecasts, in the second column, are small, statis-
tically insignificant, and the positive point estimates go the “wrong” way—high
prices relative to current dividends signal low future dividend growth. The 15-
year dividend yield forecast coefficient is also essentially zero.

Thus, the estimates summarized in Table II say that all price-dividend ratio
volatility corresponds to variation in expected returns. None corresponds to
variation in expected dividend growth, and none to “rational bubbles.”

In the 1970s, we would have guessed exactly the opposite pattern. Based
on the idea that returns are not predictable, we would have supposed that
high prices relative to current dividends reflect expectations that dividends
will rise in the future, and so forecast higher dividend growth. That pattern is
completely absent. Instead, high prices relative to current dividends entirely
forecast low returns.

This is the true meaning of return forecastability.4 This is the real measure
of “how big” the point estimates are—return forecastability is “just enough”

4 Shiller (1981), Campbell and Shiller (1988), Campbell and Ammer (1993), Cochrane (1991a,
1992, 1994, 2005b).
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to account for price volatility. This is the natural set of units with which to
evaluate return forecastability. What we expected to be zero is one; what we
expected to be one is zero.

Table II also reminds us that the point of the return-forecasting project is
to understand prices, the right-hand variable of the regression. We put return
on the left side because the forecast error is uncorrelated with the forecasting
variable. This choice does not reflect “cause” and “effect,” nor does it imply that
the point of the exercise is to understand ex post return variation.

How you look at things matters. The long-run and short-run regressions are
equivalent, as each can be obtained from the other. Yet looking at the long-run
version of the regressions shows an unexpected economic significance. We will
see this lesson repeated many times.

Some quibbles: Table II does not include standard errors. Sampling varia-
tion in long-run estimates is an important topic.5 My point is the economic
importance of the estimates. One might still argue that we cannot reject the al-
ternative views. But when point estimates are one and zero, arguing we should
believe zero and one because zero and one cannot be rejected is a tough sell.

The variance of dividend yields or price-dividend ratios corresponds entirely
to discount-rate variation, but as much as half of the variance of price changes
�pt+1 = −dpt+1 + dpt + �dt+1 or returns rt+1 ≈ −ρdpt+1 + dpt + �dt+1 corre-
sponds to current dividends �dt+1. This fact seems trivial but has caused a lot
of confusion.

I divide by dividends for simplicity, to capture a huge literature in one ex-
ample. Many other variables work about as well, including earnings and book
values.

C. A Pervasive Phenomenon

This pattern of predictability is pervasive across markets. For stocks, bonds,
credit spreads, foreign exchange, sovereign debt, and houses, a yield or val-
uation ratio translates one-for-one to expected excess returns, and does not
forecast the cashflow or price change we may have expected. In each case our
view of the facts has changed completely since the 1970s.

• Stocks. Dividend yields forecast returns, not dividend growth.6
• Treasuries. A rising yield curve signals better 1-year returns for long-term

bonds, not higher future interest rates. Fed fund futures signal returns,
not changes in the funds rate.7

• Bonds. Much variation in credit spreads over time and across firms or
categories signals returns, not default probabilities.8

• Foreign exchange. International interest rate spreads signal returns, not
exchange rate depreciation.9

5 Cochrane (2006) includes many references.
6 Fama and French (1988, 1989).
7 Fama and Bliss (1987), Campbell and Shiller (1991), Piazzesi and Swanson (2008).
8 Fama (1986), Duffie and Berndt (2011).
9 Hansen and Hodrick (1980), Fama (1984).
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Figure 2. House prices and rents. OFHEO is the Office of Federal Housing Enterprise Over-
sight “purchase-only” price index. CSW are Case-Shiller-Weiss price data. All data are from
http://www.lincolninst.edu/subcenters/land-values/rent-price-ratio.asp.

• Sovereign debt. High levels of sovereign or foreign debt signal low returns,
not higher government or trade surpluses.10

• Houses. High price/rent ratios signal low returns, not rising rents or prices
that rise forever.

Since house prices are so much in the news, Figure 2 shows house prices
and rents, and Table III presents forecasting regressions. High prices relative
to rents mean low returns, not higher subsequent rents, or prices that rise
forever. The housing regressions are almost the same as the stock market
regressions. (Not everything about house and stock data is the same of course.
Measured house price data are more serially correlated.)

There is a strong common element and a strong business cycle association to
all these forecasts.11 Low prices and high expected returns hold in “bad times,”
when consumption, output, and investment are low, unemployment is high,
and businesses are failing, and vice versa.

These facts bring a good deal of structure to the debate over “bubbles”
and “excess volatility.” High valuations correspond to low returns, and are

10 Gourinchas and Rey (2007).
11 Fama and French (1989).



Discount Rates 1053

Table III
House Price and Stock Price Regressions

Left panel: Regressions of log annual housing returns rt+1, log rent growth �dt+1, and log rent/price
ratio dpt+1 on the rent/price ratio dpt, xt+1 = a + b × dpt + εt+1 1960–2010. Right panel: Regressions
of log stock returns rt+1, dividend growth �dt+1 and dividend yields dpt+1 on dividend yields dpt,
annual CRSP value-weighted return data, 1947–2010.

Houses Stocks

b t R2 b t R2

rt+1 0.12 (2.52) 0.15 0.13 (2.61) 0.10
�dt+1 0.03 (2.22) 0.07 0.04 (0.92) 0.02
dpt+1 0.90 (16.2) 0.90 0.94 (23.8) 0.91

associated with good economic conditions. All a “price bubble” can possibly
mean now is that the equivalent discount rate is “too low” relative to some
theory. Though regressions do not establish causality, this equivalence guides
us to a much more profitable discussion.

D. The Multivariate Challenge

This empirical project has only begun. We see that one variable at a time
forecasts one return at a time. We need to understand their multivariate coun-
terparts, on both the left and the right sides of the regressions.

For example, the stock and bond regressions on dividend yield and yield
spread (ys) are

rstock
t+1 = as + bs × dpt + εs

t+1,

rbond
t+1 = ab + cb × yst + εb

t+1.

We have some additional predictor variables zt, from similar univariate or at
best bivariate (i.e., including bs × dpt) explorations:

rstock
t+1 = as + bs × dpt + ds × zt + εs

t+1.

First, which of these variables are really important in a multiple regression
sense? In particular, do the variables that forecast one return forecast another?
What are cs, ds, bb, and db in regressions

rstock
t+1 = as + bs × dpt + cs × yst + d′

szt + εs
t+1,

rbond
t+1 = ab + bb × dpt + cb × yst + d′

bzt + εb
t+1?

(7)

(I underline the variables we need to learn about.)
Second, how correlated are the right-hand terms of these regressions?

What is the factor structure of time-varying expected returns? Expected re-
turns Et(ri

t+1) vary over time t. How correlated is such variation across as-
sets and asset classes i? How can we best express that correlation as factor
structure?
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As an example to clarify the question, suppose we find that the stock return
coefficients are all double those of the bonds,

rstock
t+1 = as + 2 × dpt + 4 × yst + εs

t+1,

rbond
t+1 = ab + 1 × dpt + 2 × yst + εb

t+1.

We would see a one-factor model for expected returns, with stock expected
returns always changing by twice bond expected returns,

Et
(
rstock

t+1

) = 2 × factort,

Et
(
rbond

t+1

) = 1 × factort.
(8)

Third, what are the corresponding pricing factors? We relate time-varying
expected returns to covariances with pricing factors or portfolio returns,

Et
(
ri

t+1

) = covt
(
ri

t+1f ′
t+1

)
λt.

As a small step down this road, Cochrane and Piazzesi (2005, 2008) find that
forward rates of all maturities help to forecast bond returns of each maturity.
Multiple regressions matter as in (7). Furthermore, the right-hand sides are
almost perfectly correlated across left-hand maturities.12 A single common
factor describes 99.9% of the variance of expected returns as in (8). Finally, the
spread in time-varying expected bond returns across maturities corresponds to
a spread in covariances with a single “level” factor. The market prices of slope,
curvature, and expected-return factor risks are zero.

What similar patterns hold across broad asset classes? The challenge, of
course, is that there are too many right-hand variables, so we cannot simply
run huge multiple regressions. But these are the vital questions.

E. Multivariate Prices

I advertised that much of the point of running regressions with prices on
the right-hand side is to understand those prices. How will a multivariate
investigation change our picture of prices and long-run returns?

Again, the Campbell–Shiller present value identity

dpt ≈
∞∑
j=1

ρ j−1rt+ j −
∞∑
j=1

ρ j−1�dt+ j (9)

provides a useful way to think about these questions. Since this identity holds
ex post, it holds for any information set. Dividend yields are a great forecast-
ing variable because they reveal market expectations of dividend growth and
returns. However, dividend yields combine the two sources of information. A
variable can help the dividend yield to forecast long-run returns if it also fore-
casts long-run dividend growth. A variable can also help predict 1-year returns

12 Hansen and Hodrick (1980) and Stambaugh (1988) find similar structures.
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Table IV
Forecasting Regressions with the Consumption-Wealth Ratio

Annual data 1952–2009. Long-run coefficients in the last two rows of the table are computed using
a first-order VAR with dpt and cayt as state variables. Each regression includes a constant. Cay is
rescaled so σ (cay) = 1. For reference, σ (dp) = 0.42.

Coefficients t-Statistics Other Statistics

Left-Hand Variable dpt cayt dpt cayt R2 σ [Et(yt+1)]% σ[Et(yt+1)]
E(yt+1)

rt+1 0.12 0.071 (2.14) (3.19) 0.26 8.99 0.91
�dt+1 0.024 0.025 (0.46) (1.69) 0.05 2.80 0.12
dpt+1 0.94 −0.047 (20.4) (−3.05) 0.91
cayt+1 0.15 0.65 (0.63) (5.95) 0.43

rlr
t = ∑∞

j=1ρj−1rt+j 1.29 0.033 0.51
�dlr

t = ∑∞
j=1ρj−1�dt+j 0.29 0.033 0.12

rt+1 without much changing long-run expected returns, if it has an offsetting
effect on longer run returns {rt+j}. Such a variable signals a change in the term
structure of risk premia{Etrt+j}.

I examine Lettau and Ludvigson’s (2001a, 2001b, 2005) consumption to
wealth ratio cay as an example to explore these questions. Table IV presents
forecasting regressions.

Cay helps to forecast one-period returns. The t-statistic is large, and it raises
the variation of expected returns substantially. Cay only marginally helps to
forecast dividend growth. (Lettau and Ludvigson report that it works better in
quarterly data.)

Figure 3 graphs the 1-year return forecast using dp alone, the 1-year return
forecast using dp and cay together, and the actual ex post return. Adding
cay lets us forecast business-cycle frequency “wiggles” while not affecting the
“trend.”

Long-run return forecasts are quite different, however. Figure 4 contrasts
long-run return forecasts with and without cay. Though cay has a dramatic
effect on one-period return rt+1 forecasts in Figure 3, cay has almost no effect
at all on long-run return

∑∞
j=1ρ

j−1rt+j forecasts in Figure 4.
Figure 4 includes the actual dividend yield, to show (by (9)) how dividend

yields break into long-run return forecasts versus long-run dividend growth
forecasts. The last two rows of Table IV give the corresponding long-run re-
gression coefficients. Essentially all price-dividend variation still corresponds
to expected-return forecasts.

How can cay forecast one-year returns so strongly, but have such a small
effect on the terms of the dividend yield present value identity? In the context
of (9), cay alters the term structure of expected returns.

We can display this behavior with impulse-response functions. Figure 5 plots
responses to a dividend growth shock, a dividend yield shock, and a cay shock.
In each case, I include a contemporaneous return response to satisfy the return
identity rt+1 = �dt+1 − ρdpt+1 + dpt.
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Figure 3. Forecast and actual 1-year returns. The forecasts are fitted values of regressions
of returns on dividend yield and cay. Actual returns rt+1 are plotted on the same date as their
forecast, a + b × dpt.
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Figure 4. Log dividend yield dp and forecasts of long-run returns
∑∞

j=1ρ j−1rt+ j. Return
forecasts are computed from a VAR including dp, and a VAR including dp and cay.
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Figure 5. Impulse-response functions. Response functions to dividend growth, dividend yield,
and cay shocks. Calculations are based on the VAR of Table IV. Each shock changes the indicated
variable without changing the others, and includes a contemporaneous return shock from the
identity rt+1 = �dt+1 − ρdpt+1 + dpt. The vertical dashed line indicates the period of the shock.

These plots answer the question: “What change in expectations corresponds
to each shock?” The dividend growth shock corresponds to permanently higher
expected dividends with no change in expected returns. Prices jump to their
new higher value and stay there. It is thus a pure “expected cashflow”
shock. The dividend yield shock is essentially a pure discount-rate shock.
It shows a rise in expected returns with little change in expected dividend
growth.

Though there is a completely transitory component of prices in this
multivariate representation, the implied univariate return representation
remains very close to uncorrelated. A fall in prices with no change in
dividends is likely to mean-revert, but observing a fall in prices without ob-
serving dividends carries no such implication. As a result, stocks are not
“safer in the long run”: Stock return variance still scales nearly linearly with
horizon.

The cay shock in the rightmost panel of Figure 5 corresponds to a shift in
expected returns from the distant future to the near future, with a small similar
movement in the timing of a dividend growth forecast. It has almost no effect
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on long-run returns or dividend growth. We could label it a shock to the term
structure of risk premia.13

So, cay strongly forecasts 1-year returns, but has little effect on price-
dividend ratio variance attribution. Does this pattern hold for other return
forecasters? I don’t know. In principle, consistent with the identity (9), other
variables can help dividend yields to predict both long-run returns and long-
run dividend growth. Consumption and dividends should be cointegrated, and
since dividends are so much more volatile, the consumption-dividend ratio
should forecast long-run dividend growth. Cyclical variables should work: At
the bottom of a recession, both discount rates and expected growth rates are
likely to be high, with offsetting effects on dividend yields. Reflecting both ideas,
Lettau and Ludvigson (2005) report that “cdy, ” a cointegrating vector including
dividends, forecasts long-run dividend growth in just this way. However, the
lesser persistence of typical forecasters will work against their having much of
an effect on price-dividend ratios. Cay’s coefficient of only 0.65 on its own lag,
and the fact that cay does not forecast dividend yields in my regressions, are
much of the story for cay’s failure to affect long-run forecasts.

Even so, additional variables can only raise the contribution of long-run
expected returns to price-dividend variation. Additional variables do not shift
variance attribution from returns to dividends. A higher long-run dividend
forecast must be matched by a higher long-run return forecast if it is not to
affect the dividend yield.

This is a suggestive first step, not an answer. We have a smorgasbord of
return forecasters to investigate, singly and jointly, including information in
additional lags of returns and dividend yields (see the Appendix). The point is
this: Multivariate long-run forecasts and consequent price implications can be
quite different from one-period return forecasts. As we pursue the multivariate
forecasting question using the large number of additional forecasting variables,
we should look at pricing implications, and not just run short-run R2 contests.

II. The Cross-Section

In the beginning, there was chaos. Practitioners thought that one only needed
to be clever to earn high returns. Then came the CAPM. Every clever strategy
to deliver high average returns ended up delivering high market betas as well.
Then anomalies erupted, and there was chaos again. The “value effect” was the
most prominent anomaly.

Figure 6 presents the Fama–French 10 book-to-market sorted portfolios.
Average excess returns rise from growth (low book-to-market, “high price”) to
value (high book-to-market, “low price”). This fact would not be a puzzle if the
betas also rose. But the betas are about the same for all portfolios.

The fact that betas do not rise with value is really the heart of the puzzle.
It is natural that stocks, which have fallen on hard times, should have higher

13 For impulse-responses, see Cochrane (1994). For the effect of cay, see Lettau and Ludvigson
(2005).
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Figure 6. Average returns and betas. 10 Fama–French book-to-market portfolios. Monthly
data, 1963–2010.

subsequent returns. If the market declines, these stocks should be particularly
hard hit. They should have higher average returns—and higher betas. All
puzzles are joint puzzles of expected returns and betas. Beta without expected
return is just as much a puzzle—and as profitable—as expected return without
beta.14

Fama and French (1993, 1996) brought order once again with size and value
factors. Figure 6 includes the results of multiple regressions on the market
excess return and Fama and French’s hml factor,

Rei
t = αi + bi × rmrf t + hi × hmlt + εit.

The figure shows the separate contributions of bi × E(rmrf ) and hi × E(hml) in
accounting for average returns E(Rei). Higher average returns do line up well
with larger values of the hi regression coefficient.

Fama and French’s factor model accomplishes a very useful data reduction.
Theories now only have to explain the hml portfolio premium, not the expected

14 Frazzini and Pedersen (2010).
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returns of individual assets.15 This lesson has yet to sink in to a lot of em-
pirical work, which still uses the 25 Fama–French portfolios to test deeper
models.

Covariance is in a sense Fama and French’s central result: If the value firms
decline, they all decline together. This is a sensible result: Where there is
mean, there must be comovement, so that Sharpe ratios do not rise with-
out limit in well-diversified value portfolios.16 But theories now must also
explain this common movement among value stocks. It is not enough to
simply generate temporary price movements in individual securities, “fads”
that produce high or low prices, and then fade away, rewarding contrarians.
All the securities with low prices today must rise and fall together in the
future.

Finally, Fama and French found that other sorting variables, such as firm
sales growth, did not each require a new factor. The three-factor model took
the place of the CAPM for routine risk adjustment in empirical work.

Order to chaos, yes, but once again, the world changed completely. None of
the cross-section of average stock returns corresponds to market betas. All of
it corresponds to hml and size betas.

Alas, the world is once again descending into chaos. Expected return strate-
gies have emerged that do not correspond to market, value, and size betas.
These include, among many others, momentum,17 accruals, equity issues and
other accounting-related sorts,18 beta arbitrage, credit risk, bond and equity
market-timing strategies, foreign exchange carry trade, put option writing, and
various forms of “liquidity provision.”

A. The Multidimensional Challenge

We are going to have to repeat Fama and French’s anomaly digestion, but
with many more dimensions. We have a lot of questions to answer:

First, which characteristics really provide independent information about
average returns? Which are subsumed by others?

Second, does each new anomaly variable also correspond to a new factor
formed on those same anomalies? Momentum returns correspond to regression
coefficients on a winner–loser momentum “factor.” Carry-trade profits corre-
spond to a carry-trade factor.19 Do accruals return strategies correspond to an
accruals factor? We should routinely look.

Third, how many of these new factors are really important? Can we again
account for N independent dimensions of expected returns with K < N factor
exposures? Can we account for accruals return strategies by betas on some
other factor, as with sales growth?

15 Daniel and Titman (2006), Lewellen, Nagel, and Shanken (2010).
16 Ross (1976, 1978).
17 Jegadeesh and Titman (1993).
18 See Fama and French (2010).
19 Lustig, Roussanov, and Verdelhan (2010a, 2010b).
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Figure 7. Portfolio means versus cross-sectional regressions.

Now, factor structure is neither necessary nor sufficient for factor pricing.
ICAPM and consumption-CAPM models do not predict or require that pric-
ing factors correspond to big common movements in asset returns. And big
common movements, such as industry portfolios, need not correspond to any
risk premium. There always is an equivalent single-factor pricing representa-
tion of any multifactor model: The mean-variance efficient portfolio return is
the single factor. Still, the world would be much simpler if betas on only a few
factors, important in the covariance matrix of returns, accounted for a larger
number of mean characteristics.

Fourth, eventually, we have to connect all this back to the central question
of finance: Why do prices move?

B. Asset Pricing as a Function of Characteristics

To address these questions in the zoo of new variables, I suspect we will have
to use different methods.Following Fama and French, a standard methodology
has developed: Sort assets into portfolios based on a characteristic, look at
the portfolio means (especially the 1–10 portfolio alpha, information ratio, and
t-statistic), and then see if the spread in means corresponds to a spread of
portfolio betas against some factor. But we cannot do this with 27 variables.

Portfolio sorts are really the same thing as nonparametric cross-sectional
regressions, using nonoverlapping histogram weights. Figure 7 illustrates the
point.

For one variable, portfolio sorts and regressions both work. But we cannot
chop portfolios 27 ways, so I think we will end up running multivariate regres-
sions.20 The Appendix presents a simple cross-sectional regression to illustrate
the idea.

20 Fama and French (2010) already run such regressions, despite reservations over functional
forms.
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More generally, “time-series” forecasting regressions, “cross-sectional” re-
gressions, and portfolio mean returns are really the same thing. All we are
ever really doing is understanding a big panel-data forecasting regression,

Rei
t+1 = a + b′Cit + εi

t+1.

We end up describing expected returns as a function of characteristics,

E
(
Re

t+1 | Ct
)

,

where Ct denotes some big vector of characteristics,

Ct = [size, bm, momentum, accruals, dp, credit spread. . . .].

Is value a “time-series” strategy that moves in and out of a stock as that
stock’s book-to-market ratio changes, or is it a “cross-sectional” strategy that
moves from one stock to another following book-to-market signals? Well, both,
obviously. They are the same thing. This is the managed-portfolio theorem:21

An instrument zt in a time-series test 0 = E[(mt+1Re
t+1) zt] is the same thing as

a managed-portfolio return Re
t+1zt in an unconditional test 0 = E[mt+1(Re

t+1zt)].
Once we understand expected returns, we have to see if expected returns

line up with covariances of returns with factors. Sorted-portfolio betas are a
nonparametric estimate of this covariance function,

covt
(
Rei

t+1, ft+1
) = g(Cit).

Parametric approaches are natural here as well, to address a multidimensional
world. For example, we can run regressions such as[

Rei
t+1 − E

(
Rei

t+1 | Cit
)]

ft+1 = c + d′Cit + εi
t+1 ⇒ g(C) = c + d′C.

(The errors may not be normal, but they are mean-zero and uncorrelated with
the right-hand variable.)

We want to see if the mean return function lines up with the covariance
function: Is it true that

E(Re | C) = g(C) × λ?

An implicit assumption underlies everything we do: Expected returns, vari-
ances, and covariances are stable functions of characteristics such as size and
book-to-market ratio, and not security names. This assumption is why we use
portfolios in the first place. Without this assumption, it is hard to tell if there is
any spread in average returns at all. It means that asset pricing really is about
the equality of two functions: The function relating means to characteristics
should be proportional to the function relating covariance to characteristics.

Looking at portfolio average returns rather than forecasting regressions was
really the key to understanding the economic importance of many effects, as was
looking at long-horizon returns. For example, serial correlation with an R2 of
0.01 does not seem that impressive. Yet it is enough to account for momentum:

21 Cochrane (2005b).
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The last year’s winners went up 100%, so an annual autocorrelation of 0.1,
meaning 0.01 R2, generates a 10% annual portfolio mean return. (An even
smaller amount of time-series cross correlation works as well.) As another
classic example, Lustig, Roussanov, and Verdelhan (2010a) translate carry-
trade return-forecasting regressions to means of portfolios formed on the basis
of currency interest differentials. This step leads them to look for and find a
factor structure of country returns that depends on interest differentials, a
“high minus low” factor. This step follows Fama and French (1996) exactly,
but no one thought to look for it in 30 years of running country-by-country
time-series forecasting regressions.

The equivalence of portfolio sorts and regressions goes both ways. We can
still calculate these measures of economic significance if we estimate panel-data
regressions for means and covariances. From the spread of lagged returns and
return autocorrelation, we can calculate the momentum-portfolio implications
directly. The 1–10 portfolio information ratio is the same thing as the Sharpe
ratio of the underlying factor, or t-statistic of the cross-sectional regression
coefficient. (See the Appendix.) We can study the covariance structure of panel-
data regression residuals as a function of the same characteristics rather than
actually form portfolios,

covt
(
Ri

t+1, Rj
t+1

) = h(Cit, C jt).

Running multiple panel-data forecasting regressions is full of pitfalls of
course. One can end up focusing on tiny firms, or outliers. One can get the
functional form wrong.

However, uniting time series and cross-section will yield new insights as
well. For example, variation in book-to-market over time for a given portfolio
has a larger effect on returns than variation in book-to-market across the
Fama–French portfolios, and a recent change in book-to-market also seems to
forecast returns. (See the Appendix.)

I did not say it will be easy! But we must address the factor zoo, and I do not
see how to do it by a high-dimensional portfolio sort.

C. Prices

Then, we have to answer the central question, what is the source of price
variation?

When did our field stop being “asset pricing” and become “asset expected
returning?” Why are betas exogenous?22 A lot of price variation comes from
discount-factor news. What sense does it make to “explain” expected returns by
the covariation of expected return shocks with market expected return shocks?
Market-to-book ratios should be our left-hand variable, the thing we are trying
to explain, not a sorting characteristic for expected returns.

Focusing on expected returns and betas rather than prices and discounted
cashflows makes sense in a two-period or i.i.d. world, since in that case betas

22 Campbell and Mei (1993).
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are all cashflow betas. It makes much less sense in a world with time-varying
discount rates.

A long-run, price-and-payoff perspective may also end up being simpler. As a
hint of the possibility, solve the Campbell–Shiller identity for long-run returns,

∞∑
j=1

ρ j−1rt+ j =
∞∑
j=1

ρ j−1�dt+ j − dpt.

Long-run return uncertainty all comes from cashflow uncertainty. Long-run
betas are all cashflow betas. The long run looks just like a simple one-period
model with a liquidating dividend:

Rt+1 = Dt+1

Pt
=

(
Dt+1

Dt

) / (
Pt

Dt

)
,

rt+1 = �dt+1 − dpt.

A natural start is to forecast long-run returns and to form price decomposi-
tions in the cross-section, just as in the time series: to estimate forecasts such
as

∞∑
j=1

ρ j−1ri
t+ j = a + b′Cit + εi,

and then understand valuations with present value models as before.23 The
Appendix includes two simple examples.

In a formal sense, it does not matter whether you look at returns or prices.
The expressions 1 = Et(mt+1Rt+1) and Pt = Et

∑∞
j=1mt,t+jDt+j each imply the

other. But, as I found with return forecasts, our economic understanding may
be a lot different in a price, long-run view than if we focus on short-run returns.
What constitutes a “big” or “small” error is also different if we look at prices
rather than returns. At a 2% dividend yield, D/P = (r − g) implies that an
“insignificant” 10 bp/month expected return error is a “large” 12% price error,
if it is permanent. For example, since momentum amounts to a very small
time-series correlation and lasts less than a year, I suspect it has little effect
on long-run expected returns and hence the level of stock prices. Long-lasting
characteristics are likely to be more important. Conversely, small transient
price errors can have a large impact on return measures. A tiny i.i.d. price
error induces the appearance of mean reversion where there is none. Common
procedures amount to taking many differences of prices, which amplify the
error to signal ratio. For example, the forward spread f (n)

t − y(1)
t = p(n−1)

t − p(n)
t +

p(1)
t is already a triple difference of price data.

III. Theories

Having reviewed a bit of how discount rates vary, let us think now about why
discount rates vary so much.

23 Vuolteenaho (2002) and Cohen, Polk, and Vuolteenaho (2003) are a start, with too few
followers.
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It is useful to classify theories by their main ingredient, and by which data
they use to measure discount rates. My goal is to suggest for discount rates
something like Fama’s (1970) classification of informational possibilities. Here
is an outline of the classification:

1. Theories based on fundamental investors, with few frictions.
(a) Macroeconomic theories. Ties to macro or microeconomic quantity

data.
i. Consumption, aggregate risks.

ii. Risk sharing and background risks; hedging outside income.
iii. Investment and production.
iv. General equilibrium, including macroeconomics.

(b) Behavioral theories, focusing on irrational expectations. Ties to price
data. Other data?

(c) Finance theories. Expected return-beta models, return-based factors,
affine term structure models. Ties to price data, returns explained by
covariances.

2. Theories based on frictions.
(a) Segmented markets. Different investors are active in different mar-

kets; limited risk bearing of active traders.
(b) Intermediated markets. Prices are set by leveraged intermediaries;

funding difficulties.
(c) Liquidity.

i. Idiosyncratic liquidity: Is it easy to sell the asset?
ii. Systemic liquidity: How does an asset perform in times of market

illiquidity?
iii. Trading liquidity: Is a security useful to facilitate trading?

A. Macroeconomic Theories

“Macro” theories tie discount rates to macroeconomic quantity data, such as
consumption or investment, based on first-order conditions for the ultimate
investors or producers.

For example, the canonical consumption-based model with power utility
E

∑
tβ

tu(Ct), u(C) = C1−γ /(1 − γ ) relates discount rates to consumption growth,

mt+1 = β
uc(t + 1)

uc(t)
= β

(
Ct+1

Ct

)−γ

,

Et(Rei
t+1) = Rf cov

(
Rei

t+1, mt+1
) ≈ γ cov

(
Rei

t+1�ct+1
)
,

where Rf is the risk-free rate, Rei is an excess return, and c = log(C). High
expected returns (low prices) correspond to securities that pay off poorly when
consumption is low. This model combines frictionless markets, rational expec-
tations and utility maximization, and risk sharing so that only aggregate risks
matter for pricing. It evidently ties discount-rate variation to macroeconomic
data.



1066 The Journal of Finance R©

A vast literature has generalized this framework, including (among others)24

(1) nonseparability across goods, such as durable and nondurable,25 or traded
and nontraded goods; (2) nonseparability over time, such as habit persistence,26

(3) recursive utility and long-run risks;27 and (4) rare disasters, which alter
measurements of means and covariances in “short” samples.28

A related category of theories adds incomplete markets or frictions prevent-
ing some consumers from participating. Though they include “frictions,” I cate-
gorize such models here because asset prices are still tied to some fundamental
consumer or investor’s economic outcomes. For example, if nonstockholders do
not participate, we still tie asset prices to the consumption decisions of stock-
holders who do participate.29

With incomplete markets, consumers still share risks as much as possible.
The complete-market theorem that “all risks are shared,” marginal utility is
equated across people i and j, mi

t+1 = mj
t+1, becomes “all risks are shared as

much as possible.” The projection of marginal utility on asset payoffs X is
the same across people proj(mi

t+1|X) = proj(mj
t+1|X) ≡ x∗. We can still aggre-

gate marginal utility another than aggregate consumption before constructing
marginal utility. A discount factor mt+1 = Et+1(mi

t+1) = ∫
f (i)mi

t+1di prices as-
sets, where Et+1 takes averages across people conditional on aggregates. For
example, with power utility we have

mt+1 = βEt+1

[(
Ci

t+1

Ci
t

)−γ ]
.

The fact that we aggregate nonlinearly across people means that variation in
the distribution of consumption matters to asset prices. Times in which there
is more cross-sectional risk will be high discount-factor events.30

Outside or nontradeable risks are a related idea. If a mass of investors has
jobs or businesses that will be hurt especially hard by a recession, they avoid
stocks that fall more than average in a recession.31 Average stock returns then
reflect the tendency to fall more in a recession, in addition to market risk
exposure. Though in principle, given a utility function, one could see such risks
in consumption data, individual consumption data will always be so poorly
measured that tying asset prices to more fundamental sources of risk may be
more productive.

If we ask the “representative investor” in December 2008 why he or she
is ignoring the high premiums offered by stocks and especially fixed income,
the answer might well be “that’s nice, but I’m about to lose my job, and my
business might go under. I can’t take any more risks right now, especially in

24 See Cochrane (2007a) and Ludvigson (2011) for recent reviews.
25 Eichenbaum, Hansen, and Singleton (1988); more recently, Yogo (2006).
26 For example, Campbell and Cochrane (1999).
27 Epstein and Zin (1989), Bansal and Yaron (2004), Hansen, Heaton, and Li (2008).
28 Rietz (1988), Barro (2006).
29 For example, Mankiw and Zeldes (1991), Ait-Sahalia, Parker, and Yogo (2004).
30 Constantinides and Duffie (1996).
31 Fama and French (1996), Heaton and Lucas (2000).
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securities that will lose value or become hard to sell if the recession gets worse.”
These extensions of the consumption-based model all formalize this sensible
intuition—as opposed to the idea that these consumers have wrong expecta-
tions, or that they would have been happy to take risks but intermediaries
were making asset-pricing decisions for them.

Investment-based models link asset prices to firms’ investment decisions, and
general equilibrium models include production technologies and a specification
of the fundamental shocks. This is clearly the ambitious goal toward which we
are all aiming. The latter tries to answer the vexing questions, where do betas
come from, and what makes a company a “growth” or “value” company in the
first place?32

B. Behavioral Theories

I think “behavioral” asset pricing’s central idea is that people’s expectations
are wrong.33 It takes lessons from psychology to find systematic patterns to
the “wrong” expectations. There are some frictions in many behavioral models,
but these are largely secondary and defensive, to keep risk-neutral “rational
arbitrageurs” from coming in and undoing the behavioral biases. Often, simple
risk aversion by the rational arbitrageurs would serve as well. Behavioral
models, like “rational” models, tie asset prices to the fundamental investor’s
willingness, ability, or (in this case) perception of risk.

Behavioral theories are also discount-rate theories. A distorted probability
with risk-free discounting is mathematically equivalent to a different discount
rate:

p =
∑

s

πsmsxs = 1
Rf

∑
s

π∗
s xs,

where

π∗
s ≡ πsms Rf = πsms

/ ∑
s′

πs′ms′ ,

s denote states of nature, π s are true probabilities, ms is a stochastic dis-
count factor or marginal utility growth, xs is an asset payoff in state s, and π∗

s

are distorted probabilities.
It is therefore pointless to argue “rational” versus “behavioral” in the ab-

stract. There is a discount rate and equivalent distorted probability that can
rationalize any (arbitrage-free) data. “The market went up, risk aversion must
have declined” is as vacuous as “the market went up, sentiment must have
increased.” Any model only gets its bite by restricting discount rates or dis-
torted expectations, ideally tying them to other data. The only thing worth
arguing about is how persuasive those ties are in a given model and data set,

32 A few good examples: Gomes, Kogan, and Zhang (2003), Gala (2010), Gourio (2007).
33 See Barberis and Thaler (2003) and Fama (1998) for reviews.
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and whether it would have been easy for the theory to “predict” the opposite
sign if the facts had come out that way.34 And the line between recent “exotic
preferences” and “behavioral finance” is so blurred35 that it describes academic
politics better than anything substantive.

A good question for any theory is what data it uses to tie down discount rates.
By and large, behavioral research so far largely ties prices to other prices; it
looks for price patterns that are hard to understand with other models, such
as “overreaction” or “underreaction” to news. Some behavioral research uses
survey evidence, and survey reports of people’s expectations are certainly un-
settling. However, surveys are sensitive to language and interpretation. People
report astounding discount rates in surveys and experiments, yet still own long-
lived assets, houses, and durable goods. It does not take long in teaching MBAs
to realize that the colloquial meanings of “expect” and “risk” are entirely differ-
ent from conditional mean and variance. If people report the risk-neutral expec-
tation, then many surveys make sence. An “optimistic” cashflow growth forecast
is the same as a “rational” forecast, discounted at a lower rate, and leads to the
correct decision, to invest more. And the risk-neutral expectation—the expec-
tation weighted by marginal utility—is the right sufficient statistic for many
decisions. Treat painful outcomes as if they were more probable than they are in
fact.

Of course, “rational” theories beyond the simple consumption-based model
struggle as well. Changing expectations of consumption 10 years from now
(long-run risks) or changing probabilities of a big crash are hard to distinguish
from changing “sentiment.” At least one can aim for more predictions than
assumptions, tying together several phenomena with a parsimonious specifi-
cation.

C. Finance Theories

“Finance” theories tie discount rates to broad return-based factors. That’s
great for data reduction and practical applications. The more practical and
“relative-pricing” the application, the more “factors” we accept on the right-
hand side. For example, in evaluating a portfolio manager, hedging a portfolio,
or finding the cost of capital for a given investment, we routinely include mo-
mentum as a “factor” even though we do not have a deep theory of why the
momentum factor is priced.

However, we still need the deeper theories for deeper “explanation.” Even if
the CAPM explained individual mean returns from their betas and the market
premium, we would still have the equity premium puzzle—why is the market
premium so large? (And why are betas what they are?) Conversely, even if we
had the perfect utility function and a perfect consumption-based model, the fact

34 Fama (1998).
35 For example, which of Epstein and Zin (1989), Barberis, Santos, and Huang (2001), Hansen

and Sargent (2005), Laibson (1997), Hansen, Heaton and Li (2008), and Campbell and Cochrane
(1999) is really “rational” and which is really “behavioral?”
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that consumption data are poorly measured means we would still use finance
models for most practical applications.36

A nice division of labor results. Empirical asset pricing in the Fama and
French (1996) tradition boils down the alarming set of anomalies to a small set
of large-scale systematic risks that generate rewards. “Macro,” “behavioral,” or
other “deep” theories can then focus on why the factors are priced.

D. Theories with Frictions

Models that emphasize frictions are becoming more and more popular, espe-
cially since the financial crisis. At heart, these models basically maintain the
“rational” assumption. Admittedly, there are often “irrational” agents in such
models. However, these agents are usually just convenient shortcuts rather
than central to the vision. A model may want some large volume of trade,37 or
to include some “noise traders,” while focusing clearly on the delegated manage-
ment problem or the problem of leveraged intermediaries. For such a purpose,
it is easy simply to assume a slightly irrational class of trader rather than spell
out those trader’s motives from first principles. However, such assumptions are
not motivated by deep reading of psychology or lab experiments. The focus is
on the frictions and behavior of intermediaries rather than the risk-bearing
ability of ultimate investors or their psychological misperceptions.

I think it is useful to distinguish three categories of frictions: (1) segmented
markets, (2) intermediated markets or “institutional finance,”38 and (3) liquid-
ity. Surely, this is a broad brush categorization and more detailed divisions can
usefully be made.

E. Segmented and Intermediated Markets

I distinguish “segmented markets” from “intermediated markets,” as illus-
trated in Figure 8 . Segmentation is really about limited risk sharing among
the pool of investors who are active in a particular market.39 Their limited risk
bearing can generate “downward-sloping demands” (in quotes, because maybe
it is “supply”), and average returns that depend on a “local” factor, little and
poorly linked CAPMs.40 Given the factor zoo, which is an attractive idea.

“Intermediated markets” or “institutional finance” refers to a different, ver-
tical rather than horizontal, separation of investors from payoffs. Investors
use delegated managers. Agency problems in delegated management then spill
over into asset prices. For example, suppose investors have “equity” and “debt”

36 Campbell and Cochrane (2000) give a quantitative example.
37 Scheinkman and Xiong (2003).
38 Markus Brunnermeier coined this useful term.
39 Some important examples: Burnnermeier and Pedersen (2009), Brunnermeier (2009), Gabaix,

Krishnamurthy, and Vigneron (2007), Duffie and Strulovici (2011), Garleanu and Pedersen (2011),
He and Krishnamurthy (2010), Krishnamurthy (2008), Froot and O’Connell (2008), Vayanos and
Vila (2011).

40 For example, Gabaix, Krishnamurthy, and Vigneron (2007).
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Figure 8. Segmented markets versus intermediated markets.

claims on the mangers. When losses appear, the managers stave off bankruptcy
by trying to sell risky assets. But since all the managers are doing the same
thing, prices fall and discount rates rise. Colorful terms such as “fire sales” and
“liquidity spirals” describe this process.41

Of course, one must document and explain segmentation and intermedia-
tion. As suggested by the dashed arrows in Figure 8, there are strong incen-
tives to undo any price anomaly induced by segmentation or intermediation.
Models with these frictions often abstract from deep-pockets unintermediated
investors—sovereign wealth funds, pension funds, endowments, family offices,
and Warren Buffets—or institutional innovation to bridge the friction. Your
“fire sale” is their “buying opportunity” and business opportunity. A little more
attention to the reasons for segmentation and intermediation may help us to
understand when and for how long these models apply. For example, transac-
tions costs, attention costs, or limited expertise suggest that markets can be
segmented until the “deep pockets” arrive, but that they do arrive eventually.

41 Brunnermeier (2009) and Brunnermeier and Pedersen (2009), for example.
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So if this is why markets are segmented, segmentation will be more important
in the short run, after unusual events, or in more obscure markets. If I try to
sell a truckload of tomatoes at 2 am in front of the Booth school, I am not likely
to get full price. But if I do it every night, tomato buyers will start to show
up. In the flash crash, it took about 10 minutes for buyers to show up, which
is either remarkably long or remarkably short, depending on your point of
view.

A crucial question is, as always, what data will this class of theories use to
measure discount rates? Arguing over puzzling patterns of prices is weak. The
rational-behavioral debate has been doing that for 40 years, rather unproduc-
tively. Ideally, one should tie price or discount-rate variation to central items
in the models, such as the balance sheets of leveraged intermediaries, data on
who is actually active in segmented markets, and so forth. I grant that such
data are hard to find.42

F. Liquidity

We have long recognized that some assets have higher or lower discount rates
in compensation for greater or lesser liquidity.43 We have also long struggled
to define and measure liquidity. There are (at least) three kinds of stories for
liquidity that are worth distinguishing. Liquidity can refer to the ease of buying
and selling an individual security. Illiquidity can also be systemic: Assets will
face a higher discount rate if their prices fall when the market as a whole is
illiquid, whether or not the asset itself becomes more or less illiquid. Finally,
assets can have lower discount rates if they facilitate information trading for
assets, as money facilitates physical trading of goods.

I think of “liquidity” as different from “segmentation” in that segmentation is
about limited risk-bearing ability, while liquidity is about trading. Liquidity is a
feature of assets, not the risks to which they are claims. Many theories of liquid-
ity emphasize asymmetric information, not limited risk-bearing ability—assets
become illiquid when traders suspect that anyone buying or selling knows
something, not because traders are holding too much of a well-understood risk.
Some kinds of liquidity, such as the off-the-run Treasury spread, refer to differ-
ent prices of economically identical claims. Understanding liquidity requires
us to unravel the puzzle of why real people and institutions trade so much more
than they do in our models.

G. Efficiency and Discount Rates

All of these theories and related facts are really about discount rates,
expected returns, risk bearing, risk sharing, and risk premiums. None are

42 Mitchell, Pedersen, and Pulvino (2007) is a good example. They document who was active
in convertible arbitrage markets through two episodes in which specialized hedge funds left the
market and it took months for multi-strategy funds to move in.

43 Acharya and Pedersen (2005), Amihud, Mendelson, and Pedersen (2005), Cochrane (2005a),
Pastor and Stambaugh (2003), Vayanos and Wang (2011).
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fundamentally about slow or imperfect diffusion of cashflow information, in-
formational “inefficiency” as Fama (1970) defined it. Informational efficiency is
not wrong or disproved. Efficiency basically won, and we moved on. When we
see information, it is quickly incorporated into asset prices. There is a lot of
asset-price movement not related to visible information, but Hayek (1945) told
us that would happen, and we learned that a lot of such price variation corre-
sponds to expected returns. Little of the (large) gulf between the above models
is really about information. Seeing the facts and the models as categories of
discount-rate variation seems much more descriptive of most (not all) theory
and empirical work.

Informational efficiency is much easier for markets and models to obtain
than wide risk sharing or desegmentation, which is perhaps why it was easier
to verify. A market can become informationally efficient with only one informed
trader, who does not need to actually buy anything or take any risk. He should
run into a wall of indexers, and just bid up the asset he knows is underpriced.44

Though in reality price discovery seems to come with a lot of trading, it does
not have to do so. Risk sharing needs everyone to change their portfolios and
bear a risk in order to eliminate segmentation. For example, if the small-firm
effect came from segmentation, the passively managed small stock fund should
have ended it—but it also took the invention and marketing of such funds to
end it. The actions of small numbers of arbitrageurs could not do so.

IV. Recent Performance

This is not the place for a deep review of theory and empirical work support-
ing or confronting theories. Instead, I think it will be more productive to think
informally about how these classes of models might be able to handle big recent
events.

A. Consumption

I still think the macro-finance approach is promising. Figure 9 presents
the market price-dividend ratio, and aggregate consumption relative to a slow-
moving “habit.” The habit is basically just a long moving average of lagged
consumption, so the surplus-consumption ratio line is basically detrended con-
sumption.45

Consumption and stock market prices did collapse together in 2008. Many
high average-return securities and strategies (stocks, mortgage-backed secu-
rities, low-grade bonds, momentum, currency carry) collapsed more than low
average-return counterparts. The basic consumption-model logic—securities
must pay higher returns, or fetch lower prices, if their values fall more when
consumption falls—is not drastically wrong.

Furthermore, the habit model captures the idea that people become more
risk averse as consumption falls in recessions. As consumption nears habit,

44 Milgrom and Stokey (1982).
45 Campbell and Cochrane (1999).
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Figure 9. Surplus-consumption ratio and price-dividend ratio. The price-dividend ratio
is that of the CRSP NYSE value-weighted portfolio. The surplus consumption is formed from
monthly real nondurable consumption using the Campbell and Cochrane (1999) specification and
parameters, multiplied by three to fit on the same scale.

people are less willing to take risks that involve the same proportionate risk to
consumption. Discount rates rise, and prices fall. Lots of models have similar
mechanisms, especially models with leverage.46 In the habit model, the price-
dividend ratio is a nearly log-linear function of the surplus-consumption ratio.
The fit is not perfect, but the general pattern is remarkably good, given the hue
and cry about how the crisis invalidates all traditional finance.

B. Investment

The Q theory of investment is the off-the-shelf analogue to the simple power-
utility model from the producer point of view. It predicts that investment should
be low when valuations (market to book) are low, and vice versa,

1 + α
it

kt
= market valuet

book valuet
= Qt, (10)

where it = investment and kt = capital.

46 For example, Longstaff (2008).
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Figure 10. Investment-capital ratio, price-dividend ratio, and market-to-book ratio. In-
vestment is real private nonresidential fixed investment. Capital is cumulated from investment
with an assumed 10% annual depreciation rate. The price-dividend ratio is that of the CRSP
S&P500 portfolio. The market-to-book ratio comes from Ken French’s website.

Figure 10 contrasts the investment-capital ratio, market-to-book ratio, and
price-dividend ratio. The simple Q theory also links asset prices and investment
better than you probably supposed, both in the tech boom and in the financial
crisis.

Many finance puzzles are stated in terms of returns. To make that connection,
one can transform (10) into a relation linking asset returns to investment
growth. Many return puzzles are mirrored in investment growth as the Q
theory suggests.47

Q theory also reminds us that supply as well as demand matters in setting
asset prices. If capital could adjust freely, stock values would never change, no
matter how irrational investors are. Quantities would change instead.

I do not argue that consumption or investment caused the boom or the crash.
Endowment-economy causal intuition does not hold in a production economy.
These first-order conditions are happily consistent with a view, for example,
that losses on subprime mortgages were greatly amplified by a run on the
shadow banking system and flight to quality,48 which certainly qualifies as a

47 Cochrane (1991b, 1996, 2007a), Lamont (2000), Li, Livdan, and Zhang (2008), Liu, Whited,
and Zhang (2009), Belo (2010), Jermann (2010), Liu and Zhang (2011).

48 Cochrane (2011).
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“friction.” The first-order conditions are consistent with many other views of
the fundamental determinants of both prices and quantities. But the graphs
do argue that asset prices and discount rates are much better linked to big
macroeconomic events than most people think (and vice versa). They suggest
an important amplification mechanism: If people did not become more risk
averse in recessions, and if firms could quickly transform empty houses into
hamburgers, asset prices would not have declined as much.

I do not pretend to have perfect versions of either of these first-order con-
ditions, let alone a full macro model that captures value or the rest of the
factor zoo. These are very simple and rejectable models. Each makes a 100%
R2 prediction that is easy, though a bit silly, to formally reject: The habit model
predicts that the price-dividend ratio is a function of the surplus-consumption
ratio, with no error. The Q theory predicts that investment is a function of Q,
with no error, as in (10). The point is only that research and further elaboration
of these kinds of models, as well as using their basic intuition as an important
guide to events, is not a hopeless endeavor.

C. Comparisons

Conversely, I think the other kinds of models, though good for describing
particular anomalies, will have greater difficulty accounting for big-picture
asset-pricing events, even the huge movements of the financial crisis.

We see a pervasive, coordinated rise in the premium for systematic risk,49

common across all asset classes, and present in completely unintermediated
and unsegmented assets. For example, Figure 11 plots government and cor-
porate rates, and Figure 12 plots the BAA-AAA spread with stock prices. You
can see a huge credit spread open up and fade away along with the dip in stock
prices.

Behavioral ideas—narrow framing, salience of recent experience, and so
forth—are good at generating anomalous prices and mean returns in individ-
ual assets or small groups. They do not easily generate this kind of coordinated
movement across all assets that looks just like a rise in risk premium. Nor do
they naturally generate covariance. For example, “extrapolation” generates the
slight autocorrelation in returns that lies behind momentum. But why should
all the momentum stocks then rise and fall together the next month, just as if
they are exposed to a pervasive, systematic risk?

Finance models do not help, of course, because we are looking at variation of
the factors, which those models take as given.

Segmented or institutional models are not obvious candidates to under-
stand broad market movements. Each of us can easily access stocks and bonds
through low-cost indices.

And none of these models naturally describe the strong correlation of dis-
count rates with macroeconomic events. Is it a coincidence that people become

49 The “systematic” adjective is important. People don’t seem to drive more carefully in reces-
sions.
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Figure 11. BAA, AAA, and Treasury yields. Source: Board of Governors of the Federal Reserve
via Fred website.

2007 2008 2009 2010 2011
0.5

1

1.5

2

2.5

3

3.5

 S&P500

 P/D

Figure 12. Common Risk Premiums. P/D is the S&P500 price-dividend ratio from CRSP.
S&P500 is the level of the S&P500 index from CRSP. BAA-AAA is that bond spread, from the
Board of Governors. P/D is divided by 15 and the S&P500 is divided by 500 to fit on the same scale.
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irrationally pessimistic when the economy is in a tailspin, and they could lose
their jobs, houses, or businesses if systematic events get worse?

Again, macro is not everything—understanding the smaller puzzles is impor-
tant. The point is that looking for macro underpinnings discount-rate variation,
even through fairly simple models, is not as hopelessly anachronistic as many
seem to think.

D. Arbitrages?

One of the nicest pieces of evidence for segmented or institutional views is
that arbitrage relationships were violated in the financial crisis.50 Unwinding
the arbitrage opportunities required one to borrow dollars, which intermediary
arbitrageurs could not easily do.

Figure 13 gives one example. CDS plus Treasury should equal a corporate
bond, and usually does. Not in the crisis.

Figure 14 gives another example: covered interest parity. Investing in the
United States versus investing in Europe and returning the money with for-
ward rates should give the same return. Not in the crisis.

Similar patterns happened in many other markets, including even U. S.
Treasuries.51 Now, any arbitrage opportunity is a dramatic event. But in each
case here the difference between the two ways of getting the same cashflow is
dwarfed by the overall change in prices. And, though an “arbitrage,” the price
differences are not large enough to attract long-only deep-pocket money. If your
precious cash is in a U.S. money market fund, 20 basis points in the depth of
a financial crisis is not enough to get you to listen to the salesman offering
offshore investing with an exchange rate hedging program.

So maybe it is possible that the “macro” view still builds the benchmark
story of overall price change, with very interesting spreads opening up due to
frictions. At least we have a theory for that. Constructing a theory in which
the arbitrage spreads drive the coordinated rise in risk premium seems much
harder.

The price of coffee displays arbitrage opportunities across locations at the
ASSA meetings. (The AFA gave it away for free downstairs while Starbucks
was selling it upstairs.) The arbitrage reflects an interesting combination of
transactions costs, short-sale constraints, consumer biases, funding limits, and
other frictions. Yet we do not dream that this fact matters for big-picture vari-
ation in worldwide commodity prices.

E. Liquidity Premia and Trading Value

Trading-related liquidity does strike me as potentially important for the big
picture, and a potentially important source of the low discount rates in “bubble”
events.52

50 See also Fleckenstein, Longstaff, and Lustig (2010),
51 Hu, Pan, and Wang (2011).
52 Cochrane (2001, 2003, 2005a), Garber (2000), Krishnamurthy (2002), O’Hara (2008),

Scheinkman and Xiong (2003).
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Figure 13. Citigroup CDS and Bond Spreads. Source: Fontana (2010).
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Figure 14. Three-month Libor and FX Swap Rates. Source: Baba and Packer (2009).



Discount Rates 1079

I am inspired by one of the most obvious “liquidity” premiums: Money is
overpriced—it has a lower discount rate—relative to government debt, though
they are claims to the same payoff in a frictionless market. And this liquidity
spread can be huge, hundreds of percent in hyperinflations.

Now, money is “special” for its use in transactions. But many securities are
“special” in trading. Trading needs a certain supply of their physical shares.
We cannot support large trading volumes by recycling one outstanding share at
arbitrarily high speed. Even short sellers must hold a share for a short period
of time.

When share supply is small, and trading demand is large, markets can drive
down the discount rate or drive up the price of highly traded securities, as
they do for money. These effects have long been seen in government bonds,
for example, in the Japanese “benchmark” effect, the spreads between on-the-
run and off-the-run Treasuries, or the spreads between Treasury and agency
bonds.53 Could these effects extend to other assets?

Figures 15 and 16 are suggestive. The stock price rise and fall of the late
1990s was concentrated in NASDAQ and NASDAQ Tech. The stock volume
rise and fall was concentrated in the same place. Every asset price “bubble”—
defined here by people’s use of the label—has coincided with a similar trading
frenzy, from Dutch tulips in 1620 to Miami condos in 2006.

Is this a coincidence? Do prices rise and fall for other reasons, and large trad-
ing volume follows, with no effect on price? Or is the high price—equivalently
a low discount rate—explained at least in part by the huge volume, that is, by
the value of shares in facilitating a frenzy of information trading?

To make this a deep theory, we must answer why people trade so much.
At a superficial level, we know the answer: The markets we study exist to
support information-based trading. Yet, we really do not have good models
of information-based trading.54 Perhaps the question of how information is
incorporated in asset markets will come back to the center of inquiry.

V. Applications

Finance is about practical application, not just deep explanation. Discount-
rate variation will change applications a lot.

A. Portfolio Theory

A huge literature explores how investors should exploit the market-timing
and intertemporal-hedging opportunities implicit in time-varying expected re-
turns.55

53 Boudoukh and Whitelaw (1991), Longstaff (2004), Krishnamurthy and Vissing-Jorgensen
(2010).

54 Milgrom and Stokey (1982).
55 Merton (1971), Barberis (2000), Brennan, Schwartz, and Lagnado (1997), Campbell and

Viceira (1999, 2002), Pastor (2000); see a revew in Cochrane (2007b).
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Figure 15. NADSAQ Tech, NASDAQ, and NYSE indices. Source: Cochrane (2003).
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Figure 16. Dollar volume in NASDAQ Tech, NASDAQ, and NYSE. Source: Cochrane (2003).
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Figure 17. Multifactor efficient frontiers. Investors minimize variance given mean and co-
variance with the extra factor. A three-fund theorem emerges (left). The market portfolio is multi-
factor efficient, but not mean-variance efficient (right).

But the average investor must hold the market portfolio. We cannot all time
the market, we cannot all buy value, and we cannot all be smarter than average.
We cannot even all rebalance. No portfolio advice other than “hold the market”
can apply to everyone. A useful and durable portfolio theory must be consistent
with this theorem. Our discount-rate facts and theories suggest one, built on
differences between people.

Consider Fama and French’s (1996) story for value. The average investor is
worried that value stocks will fall at the same time his or her human capital
falls. But then some investors (“steelworkers”) will be more worried than av-
erage, and should short value despite the premium; others (“tech nerds”) will
have human capital correlated with growth stocks and buy lots of value, effec-
tively selling insurance. A two-factor model implies a three-fund theorem, and
a three-dimensional multifactor efficient frontier as shown in Figure 17.56 It is
not easy for an investor to figure out how much of three funds to hold.

And now we have dozens of such systematic risks for each investor to consider.
Time-varying opportunities create more factors, as habits or leverage shift some
investors’ risk aversion over time more or less than others. Unpriced factors
are even more important. Our steelworker should start by shorting a steel
industry portfolio, even if it has zero alpha. Zero-alpha portfolios are attractive,
as they provide actuarially fair insurance. We academics should understand the
variation across people in risks that are hedgeable by systematic factors, and
find low-cost portfolios that span that variation.57 Yet we have spent all our
time looking for priced factors that are only interesting for the measure-zero
mean-variance investor!

56 See Fama (1996), and Cochrane (2007b).
57 Heaton and Lucas (2000).
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All of this sounds hard. That’s good! We finally have a reason for a fee-based
“tailored portfolio” industry to exist, rather than just to deplore it as folly. We
finally have a reason for us to charge large tuitions to our MBA students.
We finally have an interesting portfolio theory that is not based on chasing
zero-sum alpha.

A.1. State Variables

Discount-rate variation means that state-variable hedging should matter. It
is almost completely ignored in practice. Almost all hedge funds, active man-
agers, and institutions still use mean-variance optimizers. This is particularly
striking given that they follow active strategies, predicated on the idea that
expected returns and variances vary a lot over time!

Perhaps state-variable hedging seems nebulous, and therefore maybe small
and easy to ignore. Here is a story to convince you otherwise. Suppose you are
a highly risk-averse investor, with a 10-year horizon. You are investing to cover
a defined payment, say your 8-year-old child’s future tuition at the University
of Chicago. The optimal investment is obviously a 10-year zero-coupon indexed
Treasury (TIP).58 Figure 18 tracks your investment over time.

Suppose now that bond prices plunge, and volatility surges, highlighted in
the graph. Should you sell in a panic to avoid the risk of further losses? No.
You should tear up the statement. “Short-term volatility” is irrelevant. Every
decline in price comes with a corresponding rise in expected return. Evaluating
bonds with a one-period mean-variance, alpha–beta framework is silly—though
a surprising amount of the bond investing world does it!

That is pretty obvious, but now imagine that you are a stock investor in
December 2008—say, you are running your university’s endowment. As shown
in Figure 19, stocks plummeted, and stock volatility, rose dramatically, from
16% to 70%.

Should you sell, to avoid the risks of further losses? The standard formula
says so. Picking a mean return and risk aversion to justify a 60% equity share
in normal times, you should reduce the portfolio’s equity share to 4%:

Equity Share = 1
γ

E(Re)
σ 2(Re)

. 0.6 = 1
2

0.04
0.182

⇒ 1
2

0.04

0.702 = 0.04.

(You might object that mean returns rose too. But they would had to have
risen to 4 × 0.702/0.182 = 60% for this formula to tell you not to change allo-
cation. You also may object that many investors had leverage, tenured profes-
sor salaries to pay, or other habit-like considerations for becoming more risk
averse. Fair enough, but then one-period mean-variance theory is particularly
inappropriate in the first place.)

But not everyone can do this. The market did not fall 1 − 4/60 = 93%. If you
are selling, who is buying? Is everyone else being stupid? Does it make any
sense to think that the market was irrationally over-valued in the midst of the
financial crisis?

58 Campbell and Viceira (2001), Wachter (2003).
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Figure 18. Bond Price Example. The solid line tracks the price of a zero-coupon bond that
matures in year 10. The dashed lines illustrate the yield, and the fact that the bond price will
recover by year 10. The shaded area represents a “crisis” in which interest rates rise and interest-
rate volatility rises.

The answer, of course, is that one-period mean-variance analysis is com-
pletely inappropriate. If the world were i.i.d., volatility could not change in the
first place. Stocks are a bit like bonds: Price-dividend drops increase expected
returns.59 To some extent, “short-run volatility” does not matter to a long-run
investor. State-variable hedging matters a lot, even for simple real-world appli-
cations. And, by ICAPM logic, we should therefore expect to observe multiple
priced factors. Time-series predictability should be a strong source of additional
pricing factors in the “cross section.”

A.2. Prices and Payoffs

Or maybe not. Telling our bond investor to hold 10-year zeros because their
“price happens to covary properly with state variables for their investment
opportunities” just confuses the obvious. It is much clearer to look at the final
payoff and tell him to ignore price fluctuations. Maybe dynamic portfolio theory
overall might get a lot simpler if we look at payoff streams rather than look at
dynamic trading strategies that achieve those streams.

59 Campbell and Vuolteenaho (2004).
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Figure 19. S&P500 Price Index and index volatility. Realized volatility is a 20-day
average.
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If you look at payoff streams, it is obvious that an indexed perpetuity (or
annuity) is the risk-free asset for long-term investors, despite arbitrary time-
varying return moments, just as the 10-year zero was obviously the risk-free
asset for my bond investor. it is interesting that coupon-only TIPS are perceived
to be an exotic product, or a way to speculate on inflation, not the benchmark
risk-free asset for every portfolio in place of a money-market investment.

How about risky investments? Here is a simple and suggestive step.60 If
utility is quadratic,

max
{ct}

E
∞∑

t=0

βt
(

−1
2

)
(ct − c∗)2,

it turns out that we can still use two-period mean-variance theory to think
about streams of payoffs (loosely, streams of dividends), no matter how much
expected returns vary over time. To be specific,

1. Every optimal payoff stream combines an indexed perpetuity and a claim to
the aggregate dividend stream. Less risk-averse investors hold more of the
claim to aggregate dividends, and vice versa.

2. Optimal payoffs lie on a long-run mean/long-run variance frontier. The
“long-run mean” Ẽ(x) in this statement sums over time as well as across
states,

Ẽ(x) = 1
1 − β

∞∑
j=0

β j E(xt+ j).

3. State variables disappear from portfolio theory, just as they did for our
10-year TIP investor, once he looked at the 10-year problem.

If our stock market investor thought this way when facing the crisis, he
would answer: “I invested in the aggregate dividend stream. Why should I
buy or sell? I don’t look at the statements.” This is a lot simpler to explain
and implement than state-variable identification, deep time-series modeling
of investment opportunities, value function calculations, and optimal hedge
portfolios!

If investors have outside income in this framework, they first short a payoff
stream most correlated with their outside income stream, and then hold the
mean-variance efficient payoffs. Calculating long-run correlations of income
streams this way may be easier than trying to impute discount-rate induced
changes in the present value of outside income streams, which are needed to
calculate return-based hedge portfolios.

If investors have no outside income, long-run expected returns (payoffs di-
vided by initial prices) line up with long-run market betas. A CAPM emerges,
despite arbitrary time variation in expected returns and variances. ICAPM
pricing factors fade away as we look at longer horizons. If investors do have
outside income, the payoff corresponding to average outside income payoff

60 Results from Cochrane (2008).
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Figure 21. Hedge Fund Returns. One-year excess returns of the “equity market neutral” hedge
fund index and the CRSP value-weighted portfolio. Data source: hedgeindex.com and CRSP.

emerges as a second priced factor, in the style of Fama and French’s (1996)
human capital story for the value effect.

Of course, quadratic utility is a troublesome approximation, especially for
long-term problems. Still, this simple example captures the possibility that a
price and payoff approach can give a much simpler view of pricing and portfolio
theory than we get by focusing on the high-frequency dynamic trading strategy
that achieves those payoffs in a given market structure.

B. Alphas, Betas, and Performance Evaluation

In the 1970 view, there is one source of systematic risk, the market index.
Active management chases “alpha,” which means uncovering assets whose
prices do not reflect available information.

Now we have dozens of dimensions of systematic risks. Many hedge fund
strategies include an element of option writing. For example, Figure 21 shows
the annual returns of “equity market neutral” hedge funds together with the
market return. “Providing liquidity” looks a lot like writing out-of-the-money!61

61 Mitchell and Pulvino (2001), Asness, Krail, and Liew (2001), Agarwal, and Naik (2004).
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I tried telling a hedge fund manager, “You don’t have alpha. Your returns
can be replicated with a value-growth, momentum, currency and term carry,
and short-vol strategy.” He said, “‘Exotic beta’ is my alpha. I understand those
systematic factors and know how to trade them. My clients don’t.” He has
a point. How many investors have even thought through their exposures to
carry-trade or short-volatility “systematic risks,” let alone have the ability to
program computers to execute such strategies as “passive,” mechanical invest-
ments? To an investor who has not heard of it and holds the market index,
a new factor is alpha. And that alpha has nothing to do with informational
inefficiency.

Most active management and performance evaluation today just is not well
described by the alpha–beta, information-systematic, selection-style split any-
more. There is no “alpha.” There is just beta you understand and beta you do
not understand, and beta you are positioned to buy versus beta you are already
exposed to and should sell.

C. Procedures, Corporate Finance, Accounting, and Regulation

Time-varying discount rates and multiple factors deeply change many appli-
cations.

The first slide in a capital budgeting lecture looks something like this

Value of investment =
Expected payout

Rf + β
[
E(Rm) − Rf

] ,

with a 6% market premium. All of which, we now know, is completely wrong.
The market premium is not always 6%, but varies over time by as much as its
mean. (And uncertainty about the market premium is also several percentage
points.) Expected returns do not line up with CAPM betas, but rather with
multifactor betas to the extent we understand them at all. And since expected
returns change over time, the discount rate is different for cashflows at different
horizons.

It is interesting that investment decisions get so close to right anyway, with
high investment when stock prices are high. (Remember Figure 10.) Evidently,
a generation of our MBAs figured out how to jigger the numbers and get the
right answer despite a wrong model. Perhaps what we often call “irrational”
cashflow forecasts, optimistic in good times and pessimistic in bad times, are
just a good way to offset artificially constant discount rates. Or perhaps they
understood the Q theory lecture and just follow its advice.

I do not think the answer lies in multifactor betas62 or discounting with
dynamic present value models and time-varying risk premia, at least not yet.
Capital budgeting is a “relative pricing” exercise—we want to use available
information in asset markets to help us decide what the discount rate for a
given project should be. For this purpose, simply looking at average returns
of “similar” securities is enough. Understanding discount rates as a function
of characteristics—or, better, understanding valuations directly as a function

62 Fama and French (1997) try.
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of characteristics (the use of “comparables”)—may end up being more fruitful.
We do not have to explain discount rates—relate expected returns to betas and
understand their deep economics—in order to use them. We do not need an all-
purpose model of everything to extend prices from known assets to a new one.
Even when discount rates are explained, the characterization (characteristic
models) may be a better measure for practical relative pricing than the expla-
nation (beta models). Conversely, capital budgeting gives the same answer if
discount rates are “wrong.” When you shop for a salad, all you care about is
the price of tomatoes. Whether tomatoes are expensive because the trucks got
stuck in bad weather or because of an irrational bubble in the tomato futures
market makes no difference to your decision.

Many procedures in accounting, regulation, and capital structure implicitly
assume that returns are independent over time, and hence that prices only
reflect cashflow information.

Suppose that a firm has a single cashflow in 10 years, and is funded by a
zero-coupon bond and equity. In most accounting, capital structure, and reg-
ulation procedures we would use the stock and bond prices to calculate the
probability of and distance to default. But if prices decline because discount
rates rise, that fact has no implication for the probability of or distance to
default.

Perhaps banks’ complaint that low asset prices represent “illiquidity” or
“temporarily depressed valuations” rather than insolvency—a lesser chance of
making future interest and principal repayments—make some sense. Perhaps
capital requirements do not have to respond immediately to such events. Per-
haps “hold to maturity” accounting is not as silly as it sounds. Perhaps the
fact that firms change capital structures very slowly in response to changes in
equity valuations makes some sense.63

Of course, in such an event the risk-neutral probability of default has risen.
Maybe regulators, bondholders, and capital structure should respond to a rise
in the state price of the default event exactly as they respond to a rise in the
real probability of that event. Maybe, but at least it is a very different issue
and worth asking the question.

I am not arguing that mark-to-market accounting is bad, or that fudging
the numbers is a good idea. The point is only that what you do with a mark-
to-market number might be quite different in a world driven by discount-rate
variation than in a world driven by cashflow variation.64 The mark-to-market
value is no longer a sufficient statistic. A loss of value coincident with a rise in
expected return has different implications than a loss of value with a decline
in expected return. Decisions need to incorporate more information, not less.

The view that the stock price is driven by expected earnings lies behind
stock-based executive compensation as well. It is already a bit of a puzzle that
executives holding company stock or options should therefore hold systematic
risks due to recessions, market betas, or commodity price exposures, about

63 Welch (2004).
64 Heaton, Lucas, and McDonald (2009).
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which they can do nothing. Understanding that a large fraction of stock returns
reflect changes in discount rates or new-factor beta exposures makes the logic
of such incentives even more curious. Perhaps stock-based compensation has
less to do with effort and operating performance, and more with tax treatment
or incentives for risk management.

D. Macroeconomics

Large variation in risk premia implies exciting changes for macroeconomics.
Most of macroeconomics focuses on variation in a single intertemporal price,
“the” interest rate, which intermediates saving and investment. Yet in the re-
cent recession, as shown in Figure 11, interest rates paid by borrowers (and
received by any investors willing to lend) spiked up, while short-term govern-
ment rates went down. Recessions are all about changes in credit spreads,
about the willingness to bear risk and the amount of risk to be borne, far more
than they are about changes in the desire for current versus future certain con-
sumption. Most of the Federal Reserve’s response consisted of targeting risk
premiums, not changing the level of interest rates or addressing a transactions
demand for money.

Macroeconomics and finance have thought very differently about consumer
(we call them investors) and firm behavior. For example, the consumers in the
Cambpell and Cochrane (1999) habit model balance very strong precaution-
ary saving motives with very strong intertemporal substitution motives, and
have large and time-varying risk aversion. Their behavior is very far from the
permanent-income intuition, its borrowing-constrained alternative, or central
role of simple intertemporal substitution (the modern “IS” curve) in macroeco-
nomic thinking.

As one simple example, macroeconomists often think about how consumers
will respond to a change in “wealth” coming from a change in stock prices or
house prices. Financial economists might suspect that consumers will respond
quite differently to a decline in value coming from a discount-rate rise—a
temporary change in price with no change in capital stock or cashflow—than
one that comes from a change in expected cashflows or destruction of physical
capital stock.

Financial models also emphasize adjustment costs or irreversibilities: If firms
can freely transform consumption goods to capital, then stock prices (Q) are
constant. Yet, most “real business cycle” literature following King, Plosser, and
Rebelo (1988) left out adjustment costs because they did not need them to match
basic quantity correlations. The first round of “new-Keynesian” literature ab-
stracted from capital altogether, and much work in that tradition continues to
do so. Figure 10 pretty strongly suggests that Q is not constant. This figure,
the regression evidence of Table I, and interest rates in Figure 11, together
suggest that variations in the risk premium drive investment, not variation in
the level of risk-free interest rates. Adjustment costs lead to basic differences
in analysis. For example, without adjustment costs, the marginal product of
capital can be less than one, clashing with the zero bound on nominal rates.
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With adjustment costs, the price of capital can fall, giving a positive real rate
of interest.

Formal macroeconomics has started to introduce some of the same ingre-
dients that macro-finance researchers are using to understand discount-rate
variation, including “new” preferences, adjustment cost or other frictions in
capital formation.65 Since the 2008 financial crisis, there has been an explo-
sion of macroeconomic models with financial frictions, especially credit-market
frictions. Still, we are a long way from a single general-equilibrium model that
matches basic quantity and price facts.

Everyone is aware of the question. The job is just hard. Macroeconomic mod-
els are technically complicated. Macroeconomic models with time-varying risk
premia are even harder. Adding financial frictions while maintaining the mod-
els’ dynamic intertemporal character is harder still. At a deeper level, suc-
cessful “grand synthesis” models do not consist of just mixing all the popu-
lar ingredients together and stirring the pot; they must maintain the clear
quantitative-parable feature of good economic analysis.

An asset-pricing perspective also informs monetary economics, and the in-
teraction between monetary and fiscal policy. From a finance perspective, nom-
inal government debt is “equity” in the government: it is the residual claim
to primary fiscal surpluses. Hence, the price level must satisfy the standard
asset-pricing equation:

Debtt

Price levelt
= Et

∞∑
j=0

mt,t+ j (real primary surplust+ j). (11)

Inflation can absorb shocks to surpluses, just as equity absorbs shocks to profit
streams. This fact is at least an important constraint on monetary policy, espe-
cially in a time of looming deficits.66 It suggests there is a large component of
inflation that the Fed is powerless to avoid. The analogy to stocks also suggests
that variation in the discount rate mt,t+j for government debt is important. A
“flight to quality” lowers the discount rate for government debt, raising the
right-hand side of (11). People want to hold more government debt, which
means getting rid of goods and services. This story links the “rising risk pre-
mium” which finance people see as the core of a recession with the “decline
in aggregate demand” which macroeconomists see. The standard corporate fi-
nance perspective also illuminates the choice of government debt maturity
structure and denomination. Indexed or foreign-currency debt is debt, which
must be repaid or defaulted. Domestic-currency debt is equity, which can be

65 For example Christiano, Eichenbaum, and Evans (2005). However, this is also a good example
of remaining differences between macroeconomic and finance models. They use a one-period habit,
which does not generate slow-moving expected excess returns. They also use an adjustment cost
tied to investment growth rather than to the investment-capital ratio, which does not generate the
Q theory predictions of Figure 10 and related finance literature. Of course, their choices produce
better quantity dyanmics, so we need to meet in the middle somwewhere.

66 Sargent and Wallace (1981), Cochrane (2011).
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inflated. Long-term debt allows bond prices to temporarily absorb shocks to
future surplus, rather than result in inflation immediately when short-term
debt cannot be rolled over.

VI. Conclusion

Discount rates vary a lot more than we thought. Most of the puzzles and
anomalies that we face amount to discount-rate variation we do not understand.
Our theoretical controversies are about how discount rates are formed. We need
to recognize and incorporate discount-rate variation in applied procedures.

We are really only beginning these tasks. The facts about discount-rate vari-
ation need at least a dramatic consolidation. Theories are in their infancy.
And most applications still implicitly assume i.i.d. returns and the CAPM,
and therefore that price changes only reveal cashflow news. Throughout, I see
hints that discount-rate variation may lead us to refocus analysis on prices and
long-run payoff streams rather than one-period returns.

Appendix
A. Return Forecasts and VARs

A.1. Identities

Campbell and Shiller (1988) Taylor-expand the definition of log return to
obtain the approximation

rt+1 = κ − ρdpt+1 + dpt + �dt+1, (A1)

where dpt ≡ log(Dt/Pt), rt = log(Rt), dt = log(Dt), ρ ≡ PD
1+PD , PD denotes the

point about which one takes the approximation, and κ = −(1 − ρ)log(1 − ρ) −
ρlog(ρ). The point of approximation PD need not be the mean, so one can use this
and following identities to examine cross-sectional variation in dividend yields
without security-specific approximation points. When we are only interested in
second moments, we interpret symbols as deviations from means, leaving

rt+1 = −ρdpt+1 + dpt + �dt+1. (A2)

Iterating (A2) forward, we obtain

dpt =
k∑

j=1

ρ j−1rt+ j −
k∑

j=1

ρ j−1�dt+ j + ρkdpt+k.

Assuming the latter term goes to zero—the absence of “rational bubbles”—we
obtain the Cambpell–Shiller present value identity,

dpt =
∞∑
j=1

ρ j−1rt+ j −
∞∑
j=1

ρ j−1�dt+ j . (A3)
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This is an ex post identity, so it also holds in conditional expectations using any
information set.

A.2. Dividend Construction

I create dividends from the CRSP annual return series with and without
dividends. These series are defined as

Rt+1 ≡ Pt+1 + Dt+1

Pt
; RXt+1 ≡ Pt+1

Pt
.

Then, I construct the dividend yield as

Dt+1

Pt+1
= Rt+1

RXt+1
− 1.

By using an annual horizon,I avoid the strong seasonal in dividend payments
even when using monthly observations.

This definition reinvests dividends to the end of the year.67 Therefore, divi-
dend growth also includes some return information. Annual sums of dividends
are a good deal less volatile. However, the identity Rt+1 = (Pt+1 + Dt+1)/Pt

and therefore (A2), (A3), and following calculations do not hold using sums of
dividends, or dividends reinvested at the risk-free rate.

This definition of dividends has a small practical advantage as well. The
resulting dividend-price ratio is a better univariate return forecaster because
it removes a good deal of 1-year dividend growth forecastability. For example,
consider the sharp stock market decline in Fall 2008. Using a simple sum of
past dividends, we would see a large decline in the price-dividend ratio. But
much of the stock price decline surely reflected news that dividends in 2009
were going to fall. Reinvested dividends were lower than the sum, and the
resulting price-dividend ratio thus included the information that dividends
would decline in 2009.

I construct dividend growth by

Dt+1

Dt
= (Dt+1/Pt+1)

(Dt/Pt)
.

For the VAR in Tables II–IV, I use instead dividend growth implied by the
identity (A1),

�dt+1 = κ + rt+1 + ρdpt+1 − dpt.

Actual dividend growth gives very similar results. However, this construction
means that Cambpell–Shiller approximate identities hold exactly, so it is easier
to see the identities in the results. To make identities hold, it is better to
use “pure” returns rather than infer returns from dividend growth, otherwise
approximation errors can show up as magic investment opportunities.

67 The algebra is in Cochrane (1992).
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A.3. Shock Definition

I identify the dividend growth, dividend yield, and cay shocks in Figure 5 by
setting changes to the other variables to zero in each case.

By (A2), this dividend growth shock must come with a contemporaneous
return shock,

εd
t+1 = 1, ε

dp
t+1 = 0, ε

cay
t+1 = 0, εr

t+1 = 1,

and this dividend yield shock must come with a contemporaneous negative
return shock,

εd
t+1 = 0, ε

dp
t+1 = 1, ε

cay
t+1 = 0, εr

t+1 = −ρ.

Since this cay shock affects neither dividend growth nor dividend yield, it also
comes with no change in return rt,

εd
t+1 = 0, ε

dp
t+1 = 0, ε

cay
t+1 = 1, εr

t+1 = 0.

I choose this definition of shocks because it leads to nicely interpretable
responses as “cashflow” and “discount rate” news. Because dividends remain
roughly unpredictable, this “short-run” identification gives almost the same
result as a “long-run” identification. If, rather than define the first shock as
εdp

t+1= 0 and εcay
t+1= 0, we had identified the first shock by

(Et+1 − Et)
∞∑
j=1

ρ j−1rt+ j = 0,

we would have gotten nearly the same result. The resulting shocks are nearly
uncorrelated, which is also convenient. However, there is no guarantee that
these elegant properties will survive as we add more variables.

This VAR is very simple, since I left dividend growth and returns out of the
right-hand side. My purpose is to distill the essential message of more complex
VARs, not to deny that there may be some information in additional lags of
these variables.

A.4. Identities in the cay VAR

The present-value identity (A3), conditioned down and reproduced here,

dpt = E

⎡
⎣ ∞∑

j=1

ρ j−1rt+ j | It

⎤
⎦ − E

⎡
⎣ ∞∑

j=1

ρ j−1�dt+ j | It

⎤
⎦ ,

implies that an extra variable can only help dp to forecast long-horizon re-
turns if it also helps dp to forecast long-horizon dividend growth. An extra
variable can help to forecast 1-year returns by changing the term structure of
return forecasts as well. Here I show how this intuition applies algebraically
to multiple regression coefficients and impulse-response functions.
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Regressing both sides of (A3) on dpt and zt,

rlr
t =

∞∑
j=1

ρ j−1rt+ j = ar + blr
r dpt + clr

r zt + εr,

�dlr
t =

∞∑
j=1

ρ j−1�dt+ j = ad + blr
d dpt + clr

d zt + εd,

we obtain the generalized restriction on long-run multiple regression coeffi-
cients,

1 = blr
r − blr

d , (A4)

0 = clr
r − clr

d . (A5)

Equation (A4) is the same as before, now applied to the multiple regression
coefficient. Equation (A5) expresses the idea that a new variable can only help
to forecast long-run returns if it also helps to forecast long-run dividend growth.
The extra dividend growth and return forecasts will be perfectly negatively
correlated. In this way, extra long-run dividend growth forecastability means
more long-run return forecastability, not less.

In terms of individual long-horizon regressions

rt+ j = b( j)
r dpt + c( j)

r zt + εr
t+ j,

etc., (A3) similarly implies

1 =
∞∑
j=1

ρ j−1b( j)
r −

∞∑
j=1

ρ j−1b( j)
d ,

0 =
∞∑
j=1

ρ j−1c( j)
r −

∞∑
j=1

ρ j−1c( j)
d .

A variable can help to forecast 1-year returns, c(1)
r 
= 0 , only if it correspondingly

changes the forecast of longer horizon returns or dividend growth.
Since impulse-response functions are the same as regression coefficients of

future variables such as rt+j on shocks at time t, the impulse-response functions
must obey the same relation,

1 =
∞∑
j=1

ρ j−1e( j)
dp→r −

∞∑
j=1

ρ j−1e( j)
dp→�d,

0 =
∞∑
j=1

ρ j−1e( j)
z→r −

∞∑
j=1

ρ j−1e( j)
z→�d,

where e(j)
dp→r denotes the response of rt+j to a dpt shock. This fact lets me

easily interpret the change in forecastability by adding cay, in the context of
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Table AI
Return Forecasts Using Additional Predictors

The return forecasts are of the form

rt+1 = a + b × dpt + c × zt + εt+1.

Data are from Welch and Goyal (2008), 1947–2009. I calculate the variance of long-horizon
expected returns and dividend growth from a bivariate VAR, and using actual (not identity)
dividend growth forecasts. EQUIS, percentage equity issuance, is the ratio of equity issuing
activity as a fraction of total issuing activity. SVAR is stock variance, computed as the sum of
squared daily returns on the S&P500. IK is the investment to capital ratio, the ratio of aggregate
(private nonresidential fixed) investment to aggregate capital for the whole economy. DFY, the
default yield spread, is the difference between BAA- and AAA-rated corporate bond yields.

dp cay EQUIS SVAR IK DFY

c 2.21 −0.71 1.48 −5.30 5.25
t(c) (1.73) (−2.53) (3.40) (−0.85) (1.86)
b 0.13 0.10 0.19 0.15 0.11 0.13
t(b) (2.61) (1.82) (3.75) (3.05) (2.16) (2.53)
R2 0.10 0.16 0.19 0.15 0.11 0.13

σ (Et�
∞

j=1ρj−1rt+j) 0.52 0.46 0.49 0.42 0.53 0.49
σ (Et�

∞
j=1ρj−1�dt+j) 0.17 0.13 0.16 0.11 0.17 0.14

the present value identity, by plotting the impulse responses. The numbers in
Figure 5 are terms of this decomposition.

A.5. Results Using Welch–Goyal Predictors

To see if the pattern of the cay VAR holds more generally, I tried a number
of the forecasting variables in Welch and Goyal (2008). The results are in
Table AI. Each of these variables helps substantially to forecast one-period
returns. Yet the variables mean-revert quickly and do not forecast dividends
much, so the contribution to the variance of dividend yields still comes mostly
from the variance of long-run expected returns.

A.6. More Lags of Dividend Growth and Returns

An obvious first source of additional variables is less restrictive VARs than
the simple first-order VAR that I presented in the text. As usual in VARs,
individual coefficients largely enter insignificantly, so it takes some art or prior
information to see robust patterns. And by (A2), the same forecasts can be
interpreted as regressions using additional lags of any two of returns, dividend
yield, and dividend growth.

The second lag of dividend yields is at least economically important. Table
AII presents the regressions. The change in dividend yield helps the return
forecast, increasing R2 from 0.09 to 0.15, and correspondingly increasing the
more interesting measures of expected return variation. The change in div-
idend yield really helps to forecast dividend growth, with a 3.27 t-statistic,
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5% standard deviation of forecast, and a forecast that varies by 90% of the
mean. However, the 0.10 autocorrelation in �dpt suggests that this will be a
very short-lived signal, one with little impact on forecasts of long-run dividend
growth or returns, and thus to our view of the sources of price-dividend ratio
volatility.

Similarly, while individual rt−j and �dt−j coefficients do not look big and do
not have much pattern, they can nonetheless help as a group, especially if one
sensibly restricts the pattern of lagged coefficients. In this vein, Lacerda and
Santa-Clara (2010) and Koijen and van Binsbergen (2010) find that moving
averages of past dividend growth help to forecast both returns and dividend
growth (as they must, given the present value identity), almost doubling the
return-forecast R2.

A.7. VAR Calculations

To find long-run regression coefficients implied by a first-order VAR as in
Table II, I run

rt+1 = brdpt + εr
t+1, (A6)

�dt+1 = bddpt + εd
t+1,

dpt+1 = φdpt + ε
dp
t+1.

(A7)

I then report

b(k)
r = br

1 − (ρφ)k

1 − ρφ
.

To calculate long-run regression coefficients as in Table IV, with z = cay, I
write the VAR as [

dpt+1

zt+1

]
= �

[
dpt

zt

]
+

[
ε

dp
t+1

εz
t+1

]
,

[
rt+1

�dt+1

]
= B

[
dpt

zt

]
+

[
εr

t+1

εd
t+1

]
.

Table AII
Return Forecasts with Additional Lags

Forecasts using dividend yield and change in dividend yield. CRSP value-weighted return,
1947–2009. �dpt = dpt − dpt−1.

Left-Hand Variable dpt �dpt t(dpt) t(�dpt) R2 σ [Et(y)]% σ[Et(y)]
E(y)

rt+1 0.13 0.26 (2.45) (1.83) 0.15 6.76 0.65
�dt+1 0.03 0.35 (0.62) (3.27) 0.14 4.98 0.90
dpt+1 0.93 0.10 (24.7) (0.85) 0.91
�dpt+1 −0.07 0.10 (−1.85) (0.85) 0.06
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I then report

Et

[
rlr

t

�dlr
t

]
= B

∞∑
j=1

ρ j−1� j−1

[
dpt

zt

]
= B(I − ρ�)−1

[
dpt

zt

]
.

B. Asset Pricing as a Function of Characteristics

B.1. Portfolio Spreads

In the text, I related 1–10 portfolio means to Sharpe ratios of underlying fac-
tors. Here is the result. Suppose that expected returns rise with a characteristic
Ci (for example, log book-to-market ratio)

E(Rei) = a + b × Ci,

and this variation corresponds exactly to a factor (for example, hml),

Rei
t = βi × ft + εt,

with betas that also rise with the characteristic

βi = a
E( f )

+ b
E( f )

× Ci,

and with residuals that are uncorrelated

cov(εi, ε j) = 0.

Now, consider the usual 1–10 or 1–20 spread portfolio. Its mean and variance
are

E(Rei − Rej) = b(Ci − C j),

σ 2(Rei − Rej) = (
βi − β j)2

σ ( f )2 + 2
σ 2

ε

N
= b2

E( f )2

(
Ci − C j)2

σ ( f )2 + 2
σ 2

ε

N
,

where N is the number of securities in each portfolio. The Sharpe ratio, which
is proportional to the t-statistic for the mean spread-portfolio return, is

E(Rei − Rej)
σ (Rei − Rej)

= E( f )
σ ( f )

b(Ci − C j)√
b2

(
Ci − C j

)2 + 2
σ 2

ε

N
E( f )2

σ ( f )2

.

This Sharpe ratio rises as we look at further-separated portfolios. As Ci −
Cj increases, it approaches the pure Sharpe ratio of the factor E(f )/σ (f ). The
Sharpe ratio does not increase forever. Splitting into finer portfolios can get
the magic 1% per month portfolio mean or alpha, but cannot arbitrarily raise
Sharpe ratios or t-statistics. Splitting the portfolio more finely reduces N, so
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Figure A1. Value effect before and after 1963. Average returns on Fama–French 10 portfolios
sorted by book-to-market equity versus CAPM betas. Monthly data. Source: Ken French’s website.

splits that are too fine end up reducing the Sharpe ratio and t-statistic by
including too much idiosyncratic risk.

Having seen this analysis, however, it would seem more efficient to use
the information in all assets, not just the tail portfolios, by examining
the cross-sectional regression coefficient b̂. Since b̂ = cov(E(Ri), Ci)/var(Ci) =
E(Ri × [Ci − E(Ci)])/var(Ci), this regression coefficient is the mean of a factor
that is formed as a linear function of the characteristic.

B.2. Value, Betas, and Samples

In the text, I emphasized that all puzzles are joint puzzles of expected returns
and betas, and cautioned that the value puzzle does not hold in pre-1963 U.S.
data. Figure A1 presents the CAPM in the Fama–French 10 book-to-market
portfolios before and after 1963. In the left-hand panel, you see the familiar
failure of the CAPM—average returns are higher in the value portfolio, but
there is no association between the wide spread in average returns and market
betas. The right-hand panel shows average returns and betas before 1963.
Here the CAPM works remarkably well. The big change is not in the pattern of
average returns. Value still earns more than growth. The big change is betas:
Value firms have higher betas than growth firms in the pre-1963 period.68

B.3. Time Series and Cross-Section

As a first step toward understanding mean returns as a function of charac-
teristics, and to help make the ideas concrete, Table AIII presents regressions

68 Davis, Fama, and French (2000), Campbell and Vuolteenaho (2004), Ang and Chen (2007),
Fama and French (2006).
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using the Fama–French 25 size and book-to-market portfolios. I use log book-
to-market and log size relative to the market portfolio.

The first row of Table AIII gives a pure cross-sectional regression. The re-
gression fits the portfolio average returns quite well, with a 77% R2. (One does
better still with a size × bm cross-term, allowing the growth portfolios to have
a different slope on size than the value portfolios.)

The second row of Table AIII gives a pooled forecasting regression, which
is the most natural way to integrate time-series and cross-sectional ap-
proaches. The size coefficient is a little smaller, and the bm coefficient is much
larger.

To diagnose the difference between the cross-sectional and pooled regres-
sions, rows 3 and 4 present a regression with time dummies and a regression
with portfolio dummies respectively. Variation over time in a given portfolio’s
book-to-market ratio is a much stronger signal of return variation than the
same variation across portfolios in average book-to-market ratio.

When we run such regressions for individual firms, we cannot use dummies,
since the average return of a specific company over the whole sample is mean-
ingless. The goal of this regression is to mirror portfolio formation and remove
firm name completely from the list of characteristics. The last line of Table AIII
gives a way to capture the difference between time-series and cross-sectional
approaches without dummies: It allows an independent effect of recent changes
in the characteristics. This specification accounts quite well for the otherwise
unpalatable time and portfolio dummies. The portfolio dummy regression co-
efficient that captures time-series variation is quite similar to the sum of the
level and recent-change coefficients. It is also gratifyingly similar to the “recent-
change” effect in aggregate dividend yield regressions of Table AII. One could
of course capture the same phenomenon with portfolios, by sorting based on
level and recent change of characteristics. But my goal is to explore the other
direction of this equivalence.

Next, we want to run regressions like this on individual data, and find a sim-
ilar characterization of the covariance matrix as a function of characteristics.
Then, we can expand the analysis to multiple right-hand variables.

B.4. Prices in the Cross-Section

Section II.C of the text suggested that we try to understand the variation in
prices (price-dividend ratios) across time and portfolios by exploring long-run
return predictability in the cross-section. How much of the difference between
one asset’s price-dividend ratio (or price earnings, book to market, etc.) and
another’s is due to variation in expected returns, and how much is due to
expected dividend growth or other cashflow expectations?69

To explore this question and clarify the idea, I examine the 10 Fama–French
book-to-market portfolios. Eventually, we want to do this analysis in individual
security data and avoid the use of portfolios altogether, but the portfolios are a

69 Vuolteenaho (2002), Cohen, Polk, and Vuolteenaho (2003).
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Table AIII
Characteristic Regressions

The regression specification in the first row is

E
(
Rei

t+1

) = a + b × E (sizeit) + c × E(bmit) + εi ; i = 1, 2, . . . 25.

The remaining rows are

Rei
t+1 = a + (at) + (ai) + b × sizei,t + c × bmi,t + d × (sizei,t − sizei,t−12) + e × (bmi,t − bmi,t−12).

Terms in parentheses only appear in some regressions. size is log(market equity/total market
equity). bm is log(book equity/market equity). Monthly data, 1947–2009. Data from Ken French’s
website.

Regression Coefficients

Method sizet bmt �sizet �bmt

1. Cross-section −0.030 0.27
2. Pooled −0.022 0.55
3. Time dummies −0.031 0.29
4. Portfolio dummies −0.087 1.48
5. Pooled −0.030 0.46 −0.38 1.11

simple place to start. Figure A2 presents the average return, dividend growth,
and dividend yield of the portfolios.

Over long horizons, dividend yields are stationary so long-term average re-
turns come from dividend yields and dividend growth. Taking unconditional
means of the return identity (A2), and imposing stationarity so E(dpt) =
E(dpt+1),

E
(
ri) = (1 − ρ) E

(
dpi) + E(�di). (A8)

Figure A2 shows that value portfolio returns come roughly half from greater
dividend growth and half from a larger average dividend yield.

Our objective is to produce variance decompositions over time and across
securities as I did with the market return. Flipping (A8) around, we have

E
(
dpi) = 1

1 − ρ

[
E

(
ri) − E(�di)

]
. (A9)

The same observation about the sources of return gives a fairly extreme version
of the usual surprising result about prices. Low prices—high dividend yields—
correspond to high dividend growth and thus to even higher returns.70

The first column of Table AIV, Panel A expresses the same idea in a purely
cross-sectional regression. From (A9), the coefficients in such a regression
obey

1 = bcs
r

1 − ρ
− bcs

d

1 − ρ
, (A10)

70 Chen, Petkova, and Zhang (2008, section 2.2.2) discuss this puzzle.
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Figure A2. Components of Average Returns. Average return rt+1, dividend growth �dt+1, and
dividend yield dpt for the Fama–French 10 book-to-market portfolios, 1947–2009. The dashed �d
line gives mean dividend growth implied by the approximate identity �dt+1 = rt+1 − κ + ρdpt+1 −
dpt.

where the b are the cross-sectional regression coefficients of the terms in (A9).
We can interpret these coefficients as the fraction of cross-sectional dividend
yield variation driven by discount rates and the fraction driven by dividend
growth. (Vuolteenaho (2002) uses a different present value identity to under-
stand variation in the book-to-market ratio directly, rather than use dividend
yields as I have. This is a better procedure for individual stocks, which often
do not pay dividends. I use dividend yields here for simplicity.) The results
are quite similar to the time-series regressions for the market portfolio from
Tables II to IV: More than 100% of the cross-sectional variation in average divi-
dend yields of these portfolios comes from cross-sectional variation in expected
returns (1.33). Expected dividend growth goes “the wrong way”—low prices
correspond to high dividend growth, as seen in Figure A2. (Sample means obey
the identity

E
(
dpi

t

) = 1
1 − ρ

[
E

(
ri

t+1

) − E
(
�di

t+1

) + ρ
1
T

(
dpi

T − dpi
1

)]
.

The last term is not zero, which is why the coefficients in the b/(1 − ρ) column
do not add up following (A10).)
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Table AIV
Long-Run Panel-Data Regressions

The regression specification in the first column is

E
(
Rei

t+1

) = a + b × E(dpit) + εi ; i = 1, 2, . . . 10,

and similarly for �d. The specification in the remaining columns is

Rei
t+1 = a + (at) + (ai) + b × dpi,t + (c × �dpi,t) + εi,t+1,

and similarly for �d and dp. φ represents the coefficient of dpi
t+1 on dpi

t in the same re-
gression. Terms in parentheses only appear in some regressions. Annual data on 10 Fama–French
size and book-to-market sorted portfolios, 1947–2009. Data from Ken French’s website. �dt+1 =
rt+1 − κ + ρdpt+1 − dpt. I use ρ = 0.96.

Left- Cross- Portfolio Time
Hand Section Dummies Dummies Pooled Pooled

Variable b b
1−ρ

b b
1−ρφ

b b
1−ρφ

b b
1−ρφ

dp �dp

Panel A: Book-to-Market Portfolios

r 0.053 1.33 0.107 0.90 0.044 0.33 0.095 0.97 0.090 0.074
�d 0.026 0.64 −0.011 −0.10 −0.092 −0.68 −0.003 −0.03 −0.012 0.076
dp 0.92 0.90 0.94 0.94 0.002

Panel B: Size Portfolios

r −0.014 −0.36 0.077 1.02 0.023 0.27 0.067 0.95
�d −0.048 −1.20 0.002 0.02 −0.063 −0.73 −0.004 −0.05
dp 0.963 0.952 0.968

We can, of course, ask how much of the time variation in these dividend
yields around their portfolio average corresponds to return versus dividend
growth forecasts. A regression that includes portfolio dummies, shown next
in Table AIV, Panel A, addresses this question. The 0.11 return-forecasting
coefficient for portfolios is almost the same as the return-forecasting coefficient
for the market as a whole seen in Tables II–IV. The dividend growth forecast
is also nearly zero. So all variation in book-to-market sorted portfolio dividend
yields over time, about portfolio means, corresponds to variation in expected
returns, much like that of market returns.

The regression with time dummies, next in Table AIV, Panel A, paints a
different picture. The return coefficient is smaller at 0.044, and φ is smaller
as well, so expected returns only account for 33% of the variation in dividend
yields. We finally see an important dividend growth forecast, with the right
sign, −0.09, accounting for 68% of dividend yield volatility. The strong contrast
of this result with the pure cross-sectional regression means that a time of
unusually large cross-sectional dispersion in dividend yields corresponds to
unusually high dispersion in dividend growth forecasts.

This is an important regression, in that it shows a component of variation
in valuations that does correspond to dividend growth forecasts. The unusual
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dispersion in dividend growth forecasts adds up to zero, so this kind of vari-
ation cannot be seen in the aggregate dividend yield and its forecasting rela-
tions. There is variation in forecastable dividend growth, which drives some
individual variation in dividend-price ratios. But it averages out across all se-
curities, so that the aggregate dividend yield is driven primarily by expected
returns.

A pooled regression with no dummies looks much like the time-series regres-
sion with portfolio dummies. There is more time variation in dividend yields
than cross-sectional variation, so, adding them up evenly, the time variation
dominates the pooled regression.

The last column of Table AIV, Panel A follows Table AIII, to try to unite
time-series and cross-sectional variation without using dummies. It shows a
very similar result, with the �dp variable accounting for much of the dividend
growth forecastability. The next step is to calculate the price implications of
this multivariate regression, as I did with cay, but that takes us too far afield
of this simple example.

The Fama–French size portfolios, shown in Table AIV, Panel B, paint a quite
different picture. The pure cross-sectional regression (first column) shows cash-
flow effects: Higher prices (low dividend yields) are associated with higher sub-
sequent dividend growth, which by one measure fully accounts for the dividend
yield variation! However, with portfolio dummies we again see that practically
all dividend yield variation over time for a given portfolio comes from expected
return variation, just as for the market as a whole. With time dummies, varia-
tion across portfolios in a given time period is split between return and dividend
growth forecasts.
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