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Abstract 

Implied volatility indices are becoming increasingly popular as a measure of market uncertainty 

and as a vehicle for developing derivative instruments to hedge against unexpected changes in 

volatility. Although jumps are widely considered as a salient feature of volatility, their 

implications for pricing implied volatility options and futures are not yet fully understood. This 

paper provides evidence indicating that the time series behavior of the VIX equity implied 

volatility index is well approximated by a mean reverting logarithmic diffusion with jumps. This 

process is capable of capturing stylized facts of VIX dynamics such as fast mean-reversion at 

high levels, level effects of volatility and large upward movements during times of market stress. 

Based on this process, we develop closed form valuation models for volatility futures and options 

and show that incorrectly omitting jumps may cause considerable problems to pricing and 

hedging.  
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1. Introduction 

Volatility is undoubtedly the most important variable in finance. It appears consistently across a 

wide spectrum of theories and applications in asset pricing, portfolio theory, risk management, 

derivatives, corporate finance, investment evaluation and econometrics. Most of our obsession 

with the analysis of volatility has to do with the simple fact that it is not directly observable. A 

myriad of alternative measures and approaches have been developed in academia and industry in 

order to empirically measure volatility (for a selective review and references see Mills and 

Markellos, 2007). 

 A fascinating recent development has been the treatment of volatility as a distinct asset 

which can be packaged in an index and traded using volatility futures and options (hereafter 

referred to as “volatility derivatives”). Volatility derivatives are considered by some to “have the 

potential to be one of the most important new financial innovations” (Grünbichler and Longstaff, 

1996). Traditionally, derivatives have allowed investors and firms to hedge against factors such 

as market volatility, interest rate volatility and foreign exchange volatility. Volatility derivatives 

provide protection against volatility risk, that is, unexpected changes in the volatility level itself. 

Such changes may arise as a response to changes in macroeconomic or microeconomic conditions 

(see, for example, Copeland et al., 2000).  

The first volatility index, named VIX (currently termed VXO), was introduced in 1993 

by the Chicago Board Options Exchange (CBOE). This was estimated from implied volatilities 

from at-the-money options on the SP100 index using a methodology proposed by Whaley (1993). 

The CBOE adopted a new methodology in 2003 to calculate VIX in a model-free manner as a 

weighted sum of out-of-money option prices across all available strikes on the S&P 500 index. 

Carr and Wu (2006) have demonstrated that the new VIX approximates the volatility swap rate, 

since it can represent the conditional risk-neutral expectation of the return volatility under general 

market settings. Several other implied volatility indices have been developed ever since, 
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including: the VXN and VXD in the CBOE, the VDAX-NEW in Germany, the VX1 and VX6 in 

France, the VSTOXX in the Eurex, the VSMI in Switzerland, the MVX in Canada, etc. Volatility 

derivatives have been traded over the counter for several years, mainly as volatility swaps. 

However, only recently, in March 2004, the Chicago Board of Exchange (CBOE) introduced 

volatility futures on the implied volatility measured by the VIX index. The CBOE has announced 

the imminent introduction of volatility futures on the implied volatility index VXD along with 

volatility options. Eurex has launched in September 2005 new volatility futures on the VDAX-

NEW, VSTOXX and VSMI volatility indices, respectively. 

Options and futures written on a volatility index were first suggested by Brenner and 

Galai (1989, 1993) as a response to the growing need for instruments to hedge volatility risk. It 

has been argued that volatility derivatives make markets more complete since they expand the 

realm of investment opportunities and allow direct hedging of volatility risk, without necessarily 

resorting to dynamical adjustments. Traditionally, volatility could be traded via at-the-money 

straddles, whose value increases with volatility. But straddles have the disadvantage of creating 

both market and volatility exposure. The market effect can be removed by rolling forward, 

however this is done at uncertain future market levels and trading costs. In contrast, volatility 

derivatives allow pure volatility exposure by design. Volatility indices are also particularly useful 

in monitoring market expectations. The popular financial press, eg., CNBC, Barrons, Wall Street 

Journal, regularly quotes the VIX volatility index as an “investor fear gauge” (see also Whaley, 

2000). Regulatory bodies and central banks, such as the Bank of England, have used the VIX to 

depict equity uncertainty and relate it to subsequent movements in other variables, such as swap 

spreads.1 Volatility derivatives have a wide range of important applications for all market 

participants. Investment funds employ volatility derivatives for vega hedging their portfolios 

against movements in volatility. Certain classes of investors, such as convertible bond arbitrage 

funds and structured product issuers, can use these derivatives to insure against their structural 
                                                 
1 For example, see Bank of England, Quarterly Bulletin, Winter 2003.  
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exposure to volatility. Investors can employ them to partially insure against shifts in transaction 

costs and tracking error penalties, both of which increase during periods of high uncertainty. 

Investment managers may use these derivatives to hedge against the risks of a so-called high-

correlation environment. This is because, asset correlations have been found to increase 

significantly during periods of high volatility, making active asset picking and portfolio 

diversification very difficult. As volatility is a key input for risk management and capital 

adequacy models, such as the VaR, volatility derivatives could be used by banks as a shield 

against changes in volatility and correlation during stress market conditions. Since shifts in 

volatility have a significant impact on the risk premium that shareholders require above the risk-

free rate, firms could employ volatility derivatives to protect themselves from unexpected 

subsequent changes in cost of capital. Moreover, shifts in market volatility are also likely to 

influence systematic equity risk and the return that shareholders require from a stock. Although 

not available yet, bond and foreign exchange volatility indices and derivatives, would allow firms 

that are exposed to volatility in these markets to hedge against changes in volatility. Finally, 

ample liquidity in this market is provided by traders and hedge funds since volatility derivatives 

can provide the most efficient and low-cost way for speculating against changes in volatility.  

A number of recent empirical studies have examined the properties of implied volatility 

indices (e.g., Fleming et al., 1995; Moraux et al., 1999; Whaley, 2000; Blair, et al., 2001; Corrado 

and Miller, 2003; Simon, 2003, and, Giot, 2005). This research has demonstrated the practical 

importance of at-the-money implied volatility as an efficient, yet biased, forecast of future 

realized volatility. There has been also been a growing interest in modeling the time series 

dynamics of the autonomous implied volatility process. Bakshi et al. (2006) estimated various 

general specifications of diffusion processes with a non-linear drift and diffusion component. The 

authors considered the squared implied volatility index VIX as a proxy to the unobserved 

instantaneous variance. Wagner and Szimayer (2004) investigated the presence of jumps in 

implied volatility by estimating an autonomous mean reverting jump diffusion process using data 
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on the implied volatility indices VIX and VDAX. They found evidence of significant positive 

jumps in implied volatilities. However, they adopted the rather restrictive assumption that the 

volatility jump size is constant rather than being random. Finally, Dotsis et al. (2007) examined 

the ability of alternative popular continuous-time diffusion and jump diffusion processes to 

capture the dynamics of eight major European and U.S. volatility indices. They found that the 

best models in terms of fitting  were those with random upward and downward jumps. 

In response to the developments in the industry and academia,, Grünbichler and 

Longstaff (1996) developed the first models for the valuation of futures and European-style 

options written on instantaneous volatility. The authors assumed that the underlying volatility 

followed a mean reverting square root process, similar to that used earlier by Heston (1993). 

Detemple and Osakwe (2000) provided analytical formulas to price both American and 

European-style volatility options assuming a mean-reverting in log volatility model. The discrete 

time analogs in the limit of the volatility process used by these two studies are the GARCH and 

EGARCH processes, respectively. Heston and Nandi (2000a) derived analytical solutions in both 

discrete and continuous time for pricing European options written on variance. These were based 

on a discrete-time GARCH volatility process and its continuous time counterpart developed by 

Heston and Nandi (2000b). Recently, Daouk and Guo (2004), studied the valuation of volatility 

options based on a Switching Regime Asymmetric GARCH process for the underlying. 

Motivated by the growing importance of volatility derivatives, this paper examines two 

main issues. First, it extends the empirical literature on implied volatility indices and evaluates 

the empirical performance of various diffusion and jump diffusion processes. This analysis is 

particularly useful in understanding the dynamics of the VIX and building an appropriate model 

for pricing options and futures. More specifically, we estimate the square root mean reverting 

process proposed by Grünbichler and Longstaff (1996) along with various jump diffusion 

variations. Overall, in line with previous research, we find that the addition of jumps improves 

fitting. Surprisingly, we find that the simple mean reverting log diffusion processes proposed by 
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Detemple and Osakwe (2000) outperforms all the square root type diffusion and jump diffusion 

processes, respectively. This result may be caused by misspecifications of the drift and the 

diffusion components of the square root mean reverting type processes. One must also consider 

that the log process is able to generate fast mean reversion at high levels. Moreover, its diffusion 

component takes into account the level effect of volatility as the level of implied volatility 

increases the volatility of implied volatility increases proportionally. In this manner, the simple 

mean reverting log diffusion allows rapid increases followed by fast mean reversion, which 

constitutes a salient feature of the VIX dynamics. In order to account for the possibility of large 

upward movements in the VIX during periods of market stress, we add a jump component to the 

log processes and we show that this provides the best fit in terms of various statistical metrics.  

Jumps are particularly important for accurately pricing options, especially in the short-term, since 

pure diffusions are not capable of producing realistic levels of higher moments at short horizons. 

Second, on the basis of the preliminary analysis and estimation results the paper develops closed 

form expressions for pricing futures and European options on implied volatility assuming that the 

logarithm of volatility follows a mean reverting process with jumps. The option pricing model 

proposed nests as a special case the model by Detemple and Osakwe (2000). We also assess the 

potential implications of incorrectly omitting jumps from the diffusion process by showing that 

prices and hedge ratios may differ substantially. In particular, the model without jumps in 

volatility (i.e., the Detemple and Osakwe, 2000, model) undervalues (overvalues) short (long) 

maturity options, on average, by 10% (6%), respectively. Moreover, it is far more sensitive to 

changes in the underlying with the delta hedging parameter being about 40% larger.  

The remainder of the paper is structured as following. The next section analyses the 

empirical behavior of the daily VIX over a period of 10 years. Section 3, describes the mean-

reverting volatility process considered along with two jump diffusion extensions. It also discusses 

estimation issues and empirical results. Section 4, develops valuation formulae for volatility 

futures and European options when the underlying volatility follows a mean-reverting jump-
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diffusion process. It also discusses the properties of these models and explores the potential 

importance of jumps from the perspective of pricing and risk management, respectively. The final 

section concludes the paper.  

 

2. Empirical Properties of the VIX 

We use daily closing index values of the VIX from 1/2/1990 to 9/13/2005, a total of 3,957 

observations.2 This implied volatility index is traded in the CBOE and is calculated from the 

weighted average of out-of-the money put and call S&P 500 Index option prices at two nearby 

maturities using a wide range of strikes. It should be noted that the construction of the VIX is 

independent of the model used to price the options and that the squared values of the index 

approximate the 30-day variance swap rate (Carr and Wu, 2006). Figure 1 depicts the evolution 

of the VIX and of its first differences for the period under study. The plots suggest a volatile 

mean-reverting behavior for the levels with violent swings while the first differences appear 

heteroskedastic with a number of spikes. 

 

[INSERT FIGURE 1 HERE] 

 

The summary statistics of the series, shown in Table 1, largely confirm this behavior. The VIX 

ranges between about 9% to 45%, with an average of 19.6%. The higher moments suggest a 

leptokurtotic distribution skewed to the right for both levels and differences. The Jarque-Bera test 

rejects the normality assumption at a high level of confidence. Autocorrelations die out slowly in 

levels, something consistent with a smooth, possibly mean reverting process. Differences appear 

anti-persistent with small negative short-term autocorrelations. The highly significant squared 

autocorrelations strongly suggest heteroskedasticity.  

                                                 
2 Data are drawn from the website of the CBOE. 
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[INSERT TABLE 1 HERE] 

[INSERT TABLE 2 HERE] 

 

Given that simple Brownian motion processes have also been employed in the literature to model 

volatility indices, we examine the stationarity of the VIX levels. The Augmented Dickey-Fuller 

(Dickey and Fuller, 1979) and Phillips-Perron (1988) tests both reject the null hypothesis of a unit 

root with a high level of confidence. However, the null hypothesis of stationarity cannot be 

accepted on the basis of the Kwiatkowski-Phillips-Schmidt-Shin (KPSS, 1992). Since the KPSS 

test is known to be sensitive to long-memory (see, for example, Lee and Schmidt, 1996) and 

motivated by relevant empirical findings in the literature with respect to long-memory in 

historical volatility (e.g., Ding, et al, 1993; Baillie et al. 1996, by Breidt, et al., 1998), we 

examine further this possibility. Lo’s (1991) modified R/S test statistic for long range dependence 

is significant at the 5% level with a value of 9.4875. The Geweke and Porter-Hudak (1983) log-

periodogram method implemented with the trimming and smoothing options proposed by 

Robinson (1995), produced an estimate of fractional unit root d equal to 0.7236 (p = 0.0736). One 

must view this evidence with caution since long-memory tests are sensitive to a variety of factors 

such as structural breaks, outliers, regime switching and nonlinear transformations (see, for 

example, Diebold and Inoue, 2001; Engle and Smith, 1999; Dittmann and Granger, 2002). 

Moreover, it is possible that long-memory behavior is the result of aggregation in constructing the 

VIX. Granger (1980) pointed out that the summation of low-order ARMA processes will yield 

ARMA processes of increasing, and eventually infinite order which can be well approximated 

using an ARFIMA model. Notwithstanding, on the basis of the results presented, although the 

possibility of long-memory characteristics in the VIX cannot be excluded, it will not be further 

entertained  
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[INSERT FIGURE 2 HERE] 

 

We proceed in examining the unconditional distribution of the VIX levels and differences. As 

shown by the results contained in Figure 2, the unconditional distribution of the VIX closely 

resembles the shape of a highly skewed distribution, such as the chi-squared. The distribution of 

differences is clearly leptokurtotic. Fitting a variety of distributions via maximum likelihood 

(ML) is consistent with these suggestions, the results given in Table 3. The distribution of VIX 

levels appears to be well approximated by a skewed t-student and a non-central chi-squared 

distribution. The log-normal and the extreme (max) distributions also appear to fit relatively well 

the VIX levels. The unconditional distribution of VIX differences is well approximated by a t-

student.3 The normal distribution offers a relatively poor fit for both levels and differences. 

 

[INSERT TABLE 3 HERE] 

 

A more detailed breakdown of the unconditional distributions is presented in Table 4. Given that 

the standard deviation of differences is around 0.0122 with a mean very close to zero, we can 

observe 20 distinct four-standard deviation events, 8 downward and 12 upward. Under a normal 

distribution, which is consistent with some diffusion models of volatility, the variance implies 

that these events should occur with probability under 0.005% or once in about every 80 years. 

Here, we observe a much higher probability of occurrence, 100 times higher, of over 0.5%, or, 

once in every 164 days. These findings are expected, given the fat-tails in the ΔVIX distribution 

and could be due also to jumps in the underlying process. One must be careful in interpreting 

large negative changes as downward jumps since they are not that unexpected: in all but two 

cases they are preceded by large increases in the VIX. Hence, they could also be the result of 

                                                 
3 Although results are not shown here, differences remain highly non-normal even if estimated as 
logarithmic ratios.  
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heteroskedasticity and mean reversion. Finally, we can also see that the likelihood of large 

upward movements in volatility seems to increase with the volatility level. For example, large 

volatility changes over 5% appear with probability 0.29% (4/1,369), 2.34% (6/256) and 6.9% 

(2/29) for volatility levels in the [0.2, 0.3), [0.3, 0.4) and [0.4, 0.5) range, respectively.  

 

[INSERT TABLE 4 HERE] 

 

3. Diffusion and Jump Diffusion Processes for the VIX 

3.1 Diffusion Processes 

One of the simplest processes to model volatility is the Mean Reverting Gaussian Process (also 

called Ornstein – Uhlenbeck). It was initially proposed in order to capture the mean reverting 

empirical property of volatility (e.g., Hull and White, 1987; Stein and Stein, 1991; Scott, 1987; 

Brenner et al, 2006). Under this process, the implied volatility changes are normal, something 

that is clearly rejected from our empirical analysis of the VIX. Moreover, this process has the 

significant disadvantage of allowing negative values. Two of the most popular alternative 

processes that have been developed in the literature are the Mean Reverting Square Root Process 

(SR) and the Mean Reverting Logarithmic Process (LR), given by equations (1), (2), 

respectively:4  

 ( )t t t tdV k V dt V dZθ σ= − +  (1) 

 ( ) ( )( )t t td lnV k lnV dt dZθ σ= − +  (2) 

 

                                                 
4 See Hull and White (1988), Heston (1993), Ball and Roma (1994), Heynen et al. (1994), Grünbichler and 
Longstaff (1996), Bates (2000), and, Jones (2003) for the case of SR, and Wiggins (1987) and  Detemple 
and Osakwe (2000) for he case of LR. 
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where Vt  is the value of VIX at time t, dZt is a standard Wiener process, k is the speed of mean 

reversion, θ is the long run mean, and σ is the diffusion coefficient. Equations (1) and (2) are 

defined under the actual probability measure P. 

Both processes can be obtained as a limit of ARCH-type processes. In particular, Heston 

and Nandi (2000b) have shown that a degenerate case of the SR can be obtained as a limit of a 

particular GARCH-type process, similar to the NGARCH and VGARCH models of Engle and Ng 

(1993). Detemple and Osakwe show that the EGARCH model of Nelson (1990) converges to a 

Gaussian process that is mean reverting in the log and thus matches the specification of the LR 

process. These processes should be able to capture the two basic empirical characteristics of the 

VIX: mean reversion and heteroskedasticity. Furthermore, volatility follows a non-central Chi-

squared distribution under the SR and a log-normal distribution under the LR, respectively (see 

Cox et al., 1985 and Detemple and Osakwe, 2000), which is consistent with our analysis of the 

VIX unconditional distribution. We do not consider diffusion processes belonging to the CEV 

class (see Chan et al., 1992) since option pricing becomes infeasible due to the intractability of 

the characteristic function (see Duffie et al., 2000). The density function can be approximated  via 

Taylor expansion in the time domain (see Ait-Sahalia, 1999; Bakshi et al., 2006) and econometric 

estimation is possible using discretely sampled data. However, using this approach, only very 

short term options can be accurately priced. 

 

3.2 Jump-Diffusion Processes 

Since the preliminary analysis suggests also the possibility of upward jumps in the VIX, we 

consider three basic types of mean reverting processes augmented with upward jumps: 
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Square-Root Process with Jumps (SRJ) ( )t t t t tdV k V dt V dZ ydqθ σ= − + +          (3) 

Square-Root Process with proportional Jumps (SRPJ) ( )t t t t tdV k V dt V dZ ydqθ σ= − + +          (4) 

Logarithmic Process with Jumps (LRJ) ( ) ( )( )t t t td lnV k lnV dt dZ ydqθ σ= − + +  (5) 

 

where dZt is a standard Brownian motion, tdq  is a compound Poisson process and y is the jump 

amplitude. dZ and dq are assumed to be independent processes. Again, equations (3), (4), and (5) 

are all defined under the actual probability measure P. We further assume that the jump size is 

drawn from exponential distribution: 

 

 { }0( ) 1y
yf y p e ηη −
≥=  (6) 

 

where 1/η, is the mean of the upward jump. The exponential distribution allows us to capture 

upward jumps in implied volatility and to derive the characteristic function in closed form (see 

the Appendix A1 for the derivation of the characteristic functions). The one sided exponential 

distribution adopted is a version of the double exponential distribution used by Kou (2004) in 

modeling the dynamics of stock and index prices.  

In the SRJ and LRJ processes, tdq  has a constant arrival parameter λ, whereas in the 

SRPJ process the arrival parameter is proportional to Vt, that is, Pr{dqt=1}= λVtdt. The latter 

means that in cases of the SRJ and LRJ, the probability of a jump is independent of the current 

level of implied volatility, while in the case of SRPJ the probability of jump is proportional to the 

current level of implied volatility. It can easily be verified that in term of volatility levels, the 

process in (5) can be written as: 
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 ( )ln( ) ( 1)y
t t t tdV V k V dt dW e dqθ σ⎡ ⎤= − + + −⎣ ⎦  (7) 

 

Inspection of equation (7) shows that LRJ, in contrast to the other two processes, has a 

proportional structure, i.e. the mean reversion, the diffusion coefficient and the jump size depend 

on the current level of implied volatility, respectively. The proportional structure of this model 

has three important implications. First, the model accounts for the level effect of the volatility, 

i.e., when implied volatility increases then the volatility increases proportionally. This allows 

capturing relative large changes of Vt which are likely to be characterized as jumps under the SRJ 

or the SRPJ. Second, since mean reversion depends on the level of Vt, i.e., the larger the Vt , the 

larger the mean reversion, the LRJ is able to produce “spikes”, rather than jumps, which is 

consistent with our preliminary descriptive analysis of the VIX. Third, the LRJ process allows for 

size jumps to depend on the level of implied volatility and is thus capable of generating large 

upward movements which are consistent with the behavior of the VIX during times of market 

stress. 

Finally, since we have only weak indications of abrupt downward movements, we do not 

include negative jumps. It must be noted that the log type processes are able to partially capture 

this behavior through their fast mean reversion. Also, we do not attempt to account for long-

memory or more complicated nonlinear dynamics in the data since these have been examined in 

detail by other studies and are outside the scope of this paper (see, for example, Bakshi et al., 

2006; Daouk and Guo, 2004; Bollerslev and Mikkelsen, 1996).  

 

4. Estimation Results 

Table 5 shows the ML estimation results using the VIX sample (see Appendix A2 for details on 

ML Estimation). For each process we report: the estimated parameters (annualized), the 

asymptotic t-statistics (within brackets), the log-likelihood (LL) values, the Akaike Information 
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Criterion (AIC) and the Bayes Information Criterion (BIC). The two information criteria are 

employed for comparing non-nested models. According to all statistical criteria, the best fit is 

provided by the LRJ, followed by the LR, SRPJ, SRJ and SR, respectively.  This ranking implies 

that the VIX is characterised by: a) fast mean reversion at high levels, b) increase in volatility 

when implied volatility increases, and, c) jumps proportional to the current level of implied 

volatility.   

Amongst the square-root type processes, the SRPJ process displays the highest log-

likelihood value. Since the models are nested, the likelihood ratio (LR) test can be employed to 

compare the relative goodness-of-fit. We find that the likelihood of the SRJ is significantly higher 

than that of the SR, the relevant LR test statistic being 318.5 (the critical value at the 1% level 

from a Chi-squared with two degrees of freedom is 9.21). Allowing the probability of jumps to be 

proportional to volatility, produces a further statistically significant improvement in likelihood 

(LR= 73.74). The information criteria also suggest that the addition of jumps in proportion to the 

volatility level improves fitting. Another point to be emphasized is that the introduction of the 

jump component raises significantly the speed of the mean reversion parameter for both the SRJ 

and SRPJ. This is caused by the fact that jumps do not have a persistent effect and hence the 

speed of mean reversion increases artificially so as to pull back the process to its long run mean.   

Now we turn our attention to the logarithmic processes. The estimation results show that 

the square-root type processes display lower log likelihood values relative to the LR. The better 

fit of the LR is also verified by the information criteria. This result should not come as a surprise 

since, as mentioned previously, the LR is capable of generating large increases in implied 

volatility at high levels, followed by rapid mean reversion. Essentially, changes that appear as 

jumps can also be generated by suitable diffusion components. This result points to the 

conclusion that before adding a jump factor, it is crucial to specify correctly the drift and 

diffusion.  
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The inclusion of jumps in the LR enhances statistical fitting even further. Once the drift and 

the diffusion components are correctly specified, the inclusion of jumps allows capturing 

additional skewness. This is also evident from the fact that σ drops from 0.88 to 0.75, which 

implies that jumps account for a substantial component of volatility, as expected intuitively. The 

estimate of the Poisson arrival rate implies 40 jumps per year with a jump amplitude of 

approximately 7%.  In contrast to the SRJ and SRPJ, the speed of mean reversion in the LRJ 

increases only slightly. This is an advantage, since the drift of the process is capable of generating 

rapid mean reversion, without inducing unrealistically high levels of k due to the presence of the 

jump component. 

 

[INSERT TABLE 5 HERE] 

 

In order to check the stability of the parameters we divide the sample into two equal parts and we 

re-estimate the processes. The results for the first and second subsample are reported in Table 6. 

For all processes we can draw the following general conclusions. First, the diffusion coefficient 

(σ) displays a stable behavior in both subsamples when compared to the complete sample. 

Second, the mean reversion parameter is higher in both subsamples. However, it is known in the 

literature that the mean reversion parameter is biased upwards in finite samples and accurate 

estimation requires large data sets (e.g., Phillips and Yu, 2005). Third, the long run mean is 

higher (lower) in the first (second) subsample when compared to the complete sample. By visual 

inspection of the VIX time series, it appears that indeed the index is characterised by two 

different regimes. A low volatility regime until the mid 90s followed by a high volatility regime. 

An interesting extension for future research would be to build a two factor model and allow the 

long run mean to follow another stochastic process. Under this set up, one should take into 

account the fact that the number of parameters to be estimated increases substantially. Since the 

long run mean is unobserved, the two factor model can be estimated by means of Kalman filter. 
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Fourth, the estimation in the subsamples reveals some changes in the parameters of the Poisson 

arrival rates. Yet, this phenomenon may not be due to structural changes because the parameters 

governing the jump component are known to be rather “noisy” and large samples may be required 

for disentangling accurately the diffusion from jumps. 

 

[INSERT TABLE 6 HERE] 

 
5. Pricing of Volatility Derivatives 

In this section we derive analytical formulae for pricing option and futures contracts on volatility 

indices when the underlying follows a Mean Reverting Logarithmic Process with Jumps (LRJ). 

We also examine the properties of the proposed models and investigate the potential implications 

of incorrectly omitting jumps from the volatility process. 

 

5.1 Volatility Futures 

Before proceeding to futures valuation, we must rewrite equation (5) under the risk neutral 

probability measure Q. Since VIX is not a tradable asset, implying that the market is not 

complete, the equivalent martingale measure Q is not unique and the actual measure that should 

be used to price derivatives is determined by preferences. By analogy to Heston’s (1993) 

volatility risk premium specification, we assume that the volatility risk premium is proportional to 

the logarithm of the current volatility level, i.e., ζt=ζ lnV (see also Christoffersen, et al, 2006). 

So, the volatility process under the risk neutral probability measure Q is given by: 

  

 ( ) ( ) ( )t t t t
kd lnV k lnV dt dZ ydq

k
θζ σ
ζ

⎛ ⎞
= + − + +⎜ ⎟+⎝ ⎠

 (8) 
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or, equivalently, 

 ( ) ( )( )t t td lnV k lnV dZ Jdqθ σ∗ ∗= − + +  (9) 

where k k ζ∗ = +  and * k
k
θθ
ζ

=
+

. 

 

Now denote Ft(V,T) the price of a futures contract on Vt at time t  with maturity T. Under the risk 

neutral probability measure Q, Ft(V,T) is determined by the conditional expectation of VT at time 

t. This expectation is conditional on the information up to time t: 

 

 ( , ) ( ) ,Q
t t TF V T E V t T= <  (10) 

 

As the conditional density function is not known in closed form, the characteristic function can be 

used to derive the expectation of ( )Q
t TE V . This is done by evaluating the characteristic function 

at s=-i.  

 ( ) ( ) ( )( )
( )( ) ( )

*
*

* *

2

* 2
* *

1
( ) 1

4 1

k T t
k T t

k T t k T t
t T t

e eE V Exp e ln V e ln
k k

λ ηθ σ
η

− −
− −

− − − −
⎡ ⎤− ⎛ ⎞−⎢ ⎥= + − + × + × ⎜ ⎟⎢ ⎥⎜ ⎟−⎝ ⎠⎢ ⎥⎣ ⎦

(11) 

 

Equation (11) consists of four terms: the first, the second, and the third term correspond to the 

diffusion part of the LRJ, while the third term corresponds to the jump part.  

The futures pricing formula (11) has the following limiting properties: 

i. 
( )

( )
0

,t T tT t
lim E V V
− →

=   (12) 
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ii. 
( )

( )
2

* * ,
4 1t TT t

lim E V Exp ln
k k
σ λ ηθ

η
∗

− →+∞

⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

 (13) 

iii. ( ) ( ) ( )( )
( )( ) ( )

*
*

* *

2

* 2
* *0

1
1 .

4 1

k T t
k T t

k T t k T t
t TV

e elim E V Exp e e ln
k k

λ ηθ σ
η

− −
− −

− − − −

→

⎡ ⎤− ⎛ ⎞−⎢ ⎥= + − + × + × ⎜ ⎟⎢ ⎥⎜ ⎟−⎝ ⎠⎢ ⎥⎣ ⎦

(14) 

 

Equation (12) shows the standard convergence property of the futures price to the spot price at 

maturity. Equation (13) shows that as the time-to-maturity increases, the futures price tends to the 

constant long-run volatility mean 
2

* *4 1
Exp ln

k k
σ λ ηθ

η
∗⎛ ⎞⎛ ⎞
+ +⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

. The latter means that as 

time-to-maturity increases, futures prices are becoming less sensitive to current volatility changes 

and fail to capture the stochastic evolution of the VIX. Finally, equation (14) shows that as 

volatility tends to zero, futures prices does not converge to zero, as in the case of futures on 

stocks or stock indices. The intuition of this property of futures prices can be partially related to 

the mean reverting nature of volatility (see Grünbichler and Longstaff, 1996, for a discussion on 

the effect of mean reversion on volatility futures prices) and to the existence of jumps. Even if V 

equals zero, there is always a probability that V is going to jump to a positive number prior to the 

expiration of the contract. 

 

5.2 Volatility Options  

In this section the discussion focuses on the additional impact that is due to the jump component 

since the properties of volatility options under diffusion processes are already well understood 

(see Grünbichler and Longstaff, 1996; Detemple and Osakwe, 2000). In order to obtain the 

valuation formula for a European volatility call, we follow the approach of Bakshi and Madan 
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(2000). The price ( , ; )tC V Kτ of the call option with strike price K and time to maturity τ is given 

by: 

 ( ) ( )

1 2( , ; ) ( , ) ( , ) ( , )
k T tr T t e

tC t T t K e V G t T t t T t K t T t
− −− − ⎡ ⎤− = − Π − − Π −⎣ ⎦  (15) 

 

The probabilities Π1 and Π2 are determined by 

 

 
( )

0

( , ; )1 1( , ) Re
2

is lnK
j

j

e f t T t s
t ds

is
τ

π

−
∞ ⎡ ⎤× −

Π = + ⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ,  j=1,2 (16) 

where  

( )( )
( )( ) ( )

*
*

*

2

* 2
* *

1
( , ) 1 ln

4 1

k T t
k T t

k T t
e eG t T t Exp e

k k
λ ηθ σ

η

− −
− −

− −
⎛ ⎞− ⎛ ⎞−⎜ ⎟− = − + × + × ⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠⎝ ⎠

, 

1
( , ; )( , ; )
( , ; )

f t T t s if t T t s
f t T t i

− −
− =

− −
, 

2
( , ; )( , ; )
( , ;0)

f t T t sf t T t s
f t T t

−
− =

−
,   

( ) ( )( , ; ) ( , ; )r T t
tf t T t s e F ln V T t s− −− = −  

 

The call pricing formula has the following limiting properties: 

i. ( )
0

( , ; ) ,0 ,t tT t
lim C V T t K max V K
− →

− = −  (17) 

ii. ( , ; ) 0,tT t
lim C V T t K
− →+∞

− =   (18) 
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iii. 
0

( , ; ) 0.tV
lim C V T t K
→

− = 5  (19) 

 

Equation (17) shows the standard convergence property of the option price to the option’s payoff 

at maturity. Equation (18) implies that for very long maturities, the volatility call option is going 

to be worthless, as in the models of Grünbichler and Longstaff (1996) and Detemple and Osakwe 

(2000). Finally, equation (19) suggests that as tV  tends to zero, the volatility option price 

converges also to zero. Although under the model of Detemple and Osakwe (2000) a similar 

result is obtained, the model of Grünbichler and Longstaff (1996) predicts that a similar option 

preserves a non-zero value since the later assumes that V follows a SR. Our model has an 

absorbing barrier at zero due to the multiplicative structure of the logarithmic process.  

Using the estimated parameters from the previous section, Figure 3 shows the value of a 

volatility call option as a function of volatility for three different levels of moneyness. We 

consider the diffusion model of Detemple and Osakwe (2000) along with jump-diffusion 

specifications. We can see that for short (long) maturities the diffusion model underprices 

(overprices) the volatility call in comparison to the jump-diffusion. The overpricing occurs 

because in the jump-diffusion model the volatility of the process consists of two parts: the 

diffusion and the jump part. The jump part affects the value of the volatility call mainly in the 

short-run, whilst the diffusion part affects the value of the volatility call mainly in the long-run.6 

On the other hand, the volatility of the diffusion model is driven only by the diffusion part. Note 

that although the total volatility is almost the same for both the diffusion and jump diffusion 

model, σ is significantly larger in the case of the diffusion model. In this manner, the diffusion 

                                                 
5 We see no economic reason to investigate the case ( , ; )tV

lim C V T t K
→∞

− . The assumption that volatility 

tends to infinity makes no economic sense, as it implies that volatility can drift to arbitrarily high levels in 
finite time. This is the same as assuming a priori that the stock market breaks down in some catastrophic 
fashion within a short time span. 
6 Das and Sundaram (1999) and Pan (2002) provide similar results in the case of index options, where 
jumps improve the pricing mainly of short terms options. The pricing of intermediate and long maturity 
options is mainly improved by the assumption that the volatility of returns is stochastic. 
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model underprices the volatility call for short maturities where jumps in volatility still affect the 

call value. 

 

[INSERT FIGURE 3 HERE] 

 

Figures 4 and 5 depict the delta of the diffusion and jump-diffusion models as a function of τ and 

Vt, respectively. Interestingly, the delta of the diffusion model is significantly higher in all cases. 

The latter indicates that the diffusion model is more sensitive to volatility changes than the jump-

diffusion model. The explanation follows again from the fact that σ is significantly larger in the 

case of the diffusion model. Differentiation shows that the delta of the volatility calls depends 

mainly on σ rather than λ or η. This finding has important implications in terms of hedging. For 

example, suppose that you have a long position in a call option and you use volatility options in 

order to hedge the vega risk of your position. Recall that the diffusion model overestimates the 

delta of the volatility option. So, if you incorrectly use the diffusion model to calculate the delta, 

then you will use less volatility options for hedging than those that are actually required.  

 

[INSERT FIGURE 4 HERE] 

[INSERT FIGURE 5 HERE] 

5.3 Basis Risk 

As we have already mentioned, futures and options written on the VIX were introduced as more 

effective instruments than traditional approaches (e.g., straddles, butterfly spreads) for hedging 

volatility risk. However, strictly speaking, VIX derivatives can be used directly only for hedging 

volatility of positions on the underlying index, i.e., the S&P500. To the extent that the VIX is a 

good proxy for market risk, VIX derivatives can also be used also to hedge against shifts in 

market volatility for positions on other broad stock market indices or on widely diversified 
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portfolios. However, in the case of volatility hedging for individual stocks, a basis risk problem 

arises. This risk is due to the fact that the VIX is fundamentally linked to the volatility of options 

written on S&P500 index which may be different that the volatility of an individual stock. So, 

using futures and options written on the VIX to hedge the volatility risk of individual stocks or of 

undiversified portfolios may expose the hedger to basis risk. Assume an investor is holding a 

stock or an undiversified portfolio of stocks denoted by i. Following Bakshi and Kappadia (2003), 

we assume that the relationship between the implied volatility of the portfolio and the index is 

described by:7 

 

 t t t
i i m iV V Zβ= +  (20) 

 

Where t
iV  is the implied volatility of the portfolio, t

mV  is the implied volatility index VIX, and 

t
iZ  is the idiosyncratic volatility component. The dynamics of the portfolios’ implied volatility 

are given by: 

 

 t t t
i i m idV dV dZβ= +  (21) 

 

According to equation (21), we can consider two scenarios for the dynamics of the portfolio’s 

implied volatility. If idiosyncratic volatility is constant for all t then t
idV  can be described by a 

one dimensional process. Assuming a perfect correlation between volatility futures and the 

underlying, the portfolio can be hedged by buying β futures contracts. This assumes also that the 

portfolio’s dollar value equals the dollar value of the index. Apart from the basis risk arising from 

                                                 
7 Bakshi and Kappadia (2003) use a similar relationship for the variances and show that this relationship 
implicitly assumes a single market model for the log returns. In our cases, the correspondence is not exact 
because we are dealing with volatilities. 
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the cross-hedge, since we have assumed that VIX is well described by a jump diffusion process, 

the hedge may also be exposed to basis risk from the jump component of the market. However, 

because of the mean reverting and “spiky” behavior of the VIX, jumps will expose the hedge to 

significant basis risk only if they occur just before the expiration of the contract. Moreover, if 

idiosyncratic volatility is not constant over time, the hedge will be exposed to substantial basis 

risk. The magnitude of basis risk will depend on the exact dynamics of the idiosyncratic 

volatility. 

Another cause for basis risks arises from the fact that the VIX is not a traded asset. 

Hence, in the absence of arbitrage the futures price is not directly tied to the VIX, possibly 

resulting to substantial basis risk for the hedger. Towards this direction, Carr and Wu 2006 show 

that futures prices are bounded between the forward volatility swap rate and the forward variance 

swap rate. Even so, the capitalization of the arbitrage profits is rather difficult since we have to 

actively trade either a basket of options on SPX or exotic OTC derivatives, such as forward-start 

ATM forward call options (see Carr and Wu 2006). In conclusion, a comprehensive treatment of 

the issues involved in hedging volatility risk of individual stocks is both interesting and 

important. However, this is beyond the scope of this paper and is left for future research.  

 

6. Conclusions 

Motivated by the growing literature on volatility derivatives and their imminent introduction in 

major exchanges, this paper examined the empirical relevance and potential impact of volatility 

jumps in autonomous volatility option pricing and risk management.  

Empirical analysis of the VIX over a period of 10 years provided a wealth of evidence 

supporting the existence of some stationary, mean-reverting process with jumps. An ML 

estimation scheme was applied to VIX data for a variety of processes. The results suggested that a 

simple log mean reverting diffusion performs better compared to square root diffusion or jump 
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diffusion processes, respectively. This surprising result was attributed to the misspecification of 

the drift and diffusion component of square root processes and to the fact that the log processes 

are capable of generating fast mean reversion and level effects. Moreover, we showed that when a 

jump component is added to the log processes performance is further enhanced. On the basis of 

the estimation results, we developed closed form models for pricing futures and options on the 

VIX. The proposed volatility option pricing models nests as a special case the Detemple and 

Osakwe (2000) and appears to have comparable properties. The model without jumps in volatility 

undervalues (overvalues) short (long) maturity options, on average, by 10% (6%), respectively. 

Moreover, it is far more sensitive to changes in the underlying with the delta hedging parameter 

being 40% larger.  

The findings in this paper do not necessarily support criticism against the specific 

structural form assumed by existing volatility future and option pricing models. Rather, they 

attempt to demonstrate that pricing derivatives on a volatility index should carefully account for 

salient features of the data since the results obtained are particularly sensitive to the model used to 

approximate the underlying dynamics. Testing against actual market prices will provide more 

definitive evidence on the merit of alternative pricing models. In the case of futures this is 

possible since some data do exist for futures on volatility indices (e.g., see Dotsis et al., 2007). 

However, since no volatility options market data are still inadequate, we cannot fully test the 

empirical relevance of alternative option pricing models. However, it is crucial to fully 

understand the dynamics of the underlying and the implications of competing option pricing 

models in order to understand the peculiarities of this asset class and facilitate a smooth 

functioning of the market when it operates.  

We believe that much more research is needed on the practical usefulness of volatility 

derivatives, especially for corporate finance. Although some ideas have been proposed in the 

literature and discussed in this paper, it is not yet clear how financial managers can use these 

instruments and what are the actual benefits they may expect. This is not a trivial problem since 
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the implications of volatility for a firm are so widespread, complicated and complex. For 

example, a short futures position on the VIX index buys insurance against changes in the 

volatility of the US equity market. A US firm assuming this position, would be affected directly 

and indirectly in a number of ways with respect to factors including: firm value, cost of equity, 

cost of debt, optimal finance mix, employee stock option value, value and effectiveness of 

existing hedges, value of investments, and investment hurdle rates. This complicates also the 

accounting treatment of the hedge relationship and effectiveness offered by volatility derivatives. 

For example, according to FAS 133, the statement issued by F.A.S.B. (Financial Accounting 

Standards Board) regarding accounting for derivative instruments and hedging accounting, three 

hedge relationships are recognized: fair value hedge, cash flow hedge and foreign currency 

hedge. The accounting treatment of derivatives depends on the hedge relationship they participate 

and the effectiveness of the hedge offered. In the case of volatility derivatives, the determination 

of the hedge relationship and the effectiveness is a very difficult task.  

In closing, we would like to emphasize the growing need for introducing volatility 

indices and derivatives in more markets. Brenner and Galai (1989) first argued that volatility 

indices should be developed for equity, bond and foreign exchange markets. However, the recent 

history has shown that significant volatility risk exists also in other important markets, such as, 

for example, the market for petrol and for electricity. 
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Appendix A1: Derivation of the characteristic functions for the Jump-

Diffusion Processes 

 Duffie et al. (2000) prove that, under technical regularity conditions, the characteristic function 

for affine diffusion/jump diffusion processes, like the SRJ, LRJ and SRPJ, has the following 

exponential affine form:  

 

 ( )( , ; ) exp ( ; ) ( ; )t tF V T t s A T t s B T t s V− = − + −  (22) 

 

Thus, for the case of the SRJ, ( ; )A T t s−  and ( ; )B T t s−  are given by8: 

 

 ( ) ( )( ; ) , ,A T t s a T t s z T t s− = − + −  (23) 

 
( )( )2

2

1 12 2( ; )

k T tk i s eka T t s ln
k

σθ
σ

− −⎛ ⎞− −⎜ ⎟
− = − × ⎜ ⎟

⎜ ⎟
⎝ ⎠

 (24) 

 

( )
2

2

2

1
2 22( ; )

2

k T tkk i s is e
pz T t s ln iskk k

σσ
ηλ

ησ
η

− −⎛ ⎞⎛ ⎞
− + −⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟− = ×
⎜ ⎟− −⎜ ⎟
⎝ ⎠

 (25) 

and, 

 
( )

( )( )2
( ; ) 1 1

2

k T t

k T t

ksieB T t s
k i s eσ

− −

− −
− =

− −
 (26) 

 

The characteristic function of the LRJ expressed in logarithms is given by: 

                                                 
8 This characteristic function has also been used for estimating purposes by Bakshi and Cao (2006). 
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 ( ) ( )( )( , ; ) exp ( ; ) ( ; )t tF lnV T t s A T t s B T t s lnV− = − + −  (27) 

where 

 ( )
( ) ( )2

2 2 1( ; ) (1 )
4

k T t k T t
k T t e iseA T t s is e s ln

k is
λ ηθ σ

κ η

− − − −
− − ⎛ ⎞ ⎛ ⎞− −

− = − − + ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
 (28) 

 ( )( ; ) k T tB T t s ise− −− =  (29) 

 

Finally, in the case of the SRPJ the coefficients ( ; )A T t s−  and ( ; )B T t s− cannot be solved in 

closed form and are found numerically. So, the conditional characteristic function 

( , ; ) ( )TisV
t tF V T t s E e V− = of the SRPJ must satisfy the following Kolmogorov backward 

differential equation:  

 

 [ ]
2

2
2

1( ) ( ) ( ) 0
2t t t t t

t t

F F Fk V V V F V y F V
V V

θ σ λ
τ

∂ ∂ ∂
+ − + − + Ε + − =

∂ ∂ ∂
 (30) 

 

subject to the boundary condition  

 

 ( , 0; ) tisV
tF V T t s e− = =  (31) 

 

where 1i = − . Differentiating the characteristic function given by equation (22) yields 

 

( )

2
V

VV

T t T t T t

F BF

F B F
F F A VB− − −

=

=

= +

 (32) 

 

where the subscripts denote the corresponding partial derivatives. 
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Replacing equations (32) in equation (30) and rearranging yields 

 

 ( )2 21 1 0
2

yB
t T t T tV kB B B e k B Aσ λ θ− −
⎛ ⎞⎡ ⎤− − + + Ε − + − =⎜ ⎟⎣ ⎦⎝ ⎠

 (33) 

 

Also, 

 
0

1 1 1yB y yBe e e dyη ηη
η

+∞ −⎡ ⎤Ε − = − = −⎣ ⎦ −Β∫  

Since 0tV ≠ , the expressions in the parentheses in equation (33) must equal zero. Therefore, we 

obtain the following ordinary differential equations (ODEs) 

 

 2 21 1
2T tkB B B ησ λ

η−

⎛ ⎞
− − + + − =⎜ ⎟−Β⎝ ⎠

 (34) 

 0T tk B Aθ −− =  (35) 

 

The ODEs cannot be solved in closed form. They are solved numerically subject to the boundary 

conditions ( 0; ) 0A T t s− = = , and ( 0; )B T t s is− = = . 
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Appendix A2: Maximum-Likelihood Estimation 

Suppose that { } 1

T
t t

V
=

is a discretely sampled time series of implied volatilities. Assume that we 

stand at time t, and τ denotes the sampling frequency of observations. Then, the Fourier inversion 

of the characteristic function F(V(t),τ;s) provides the required conditional density function 

[ ( ) ( )]f V t V tτ+ : 

 

 ( )

0

1[ ( ) ( )] Re[ ( ( ), ; )]isV tf V t V t e F V t s dsττ τ
π

∞ − ++ = ∫  (36) 

 

where Re  denotes the real part of complex numbers. For a sample { } 1
( ) T

t
V t

=
, the conditional log-

likelihood function to be maximized is given by: 

 

 
{ }

( )

0
1

1max log Re[ ( ( ), ; )]
T

isV t

t

e F V t s dsτ τ
π

∞ − +

Θ
=

⎛ ⎞ℑ = ⎜ ⎟
⎝ ⎠

∑ ∫  (37) 

 

where Θ={κ, θ, σ, λ, η} is the set of parameters to be estimated. The standard errors of the ML 

estimators are retrieved from the inverse Hessian evaluated at the obtained estimates. 
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 Table 1. Descriptive Statistics of VIX Index and first differences (ΔVIX) 

 VIX ΔVIX 
 Mean 0.1957 -1.23E-05 

 Median 0.1856 -0.0004 
 Maximum 0.4574 0.0992 
 Minimum 0.0931 -0.0780 
 Std. Dev. 0.0639 0.0122 
 Skewness 0.9382 0.5647 
 Kurtosis 3.7411 9.1172 

 Jarque-Bera 671.14** 6,378.52** 
ρ(1) 0.981 -0.041 
ρ(2) 0.964 -0.088 
ρ(3) 0.950 -0.057 
p2(1) 0.975 0.201 
ρ2(1) 0.950 0.189 
ρ2(1) 0.932 0.204 

ρ(q) and p2(q) are autocorrelation and squared autocorrelation  
coefficients at lag q , respectively. Two (one) stars denote significance  
at the 1% (5%) level.  
 
Table 2. Unit Root Test results of VIX 

Test  Null Hypothesis Test Statistic 
Augmented Dickey-Fuller Unit Root -3.7892** 
Phillips-Perron Unit Root -4.9068** 
Kwiatkowski-Phillips-Schmidt-Shin Stationarity 1.4366** 
The Augmented Dickey-Fuller (Dickey and Fuller, 1979) and the Phillips-Perron (1988) test the null 
hypothesis of a unit root. The Kwiatkowski-Phillips-Schmidt-Shin (1992) tests the null hypothesis of 
stationarity. An intercept is included in all test regressions. Two (one) stars denote significance at the 1% 
(5%) level. 

 
 

Table 3. Log Likelihood of Alternative Unconditional Distribution Models 
 Parameters VIX ΔVIX 
Normal 2 5,266.8 11,811.8 
Log-normal 2 5,734.4  
t-student 1 5,295.3 12,221.3 
Skewed t-student 2 5,841.5 12,225.6 
Logistic 2 5,285.3 12,123.1 
Exponential 2 5,051.4  
Non-central Chi-squared9 2 5,637.4  
Extreme (max) 2 5,647.4  
Pareto 2 4,142.9  
Weibull 2 5,267.1  
 
 

                                                 
9 The non-central Chi-squared distribution χ2(k,λ) with k degrees of freedom and λ non-centrality parameter 
is a special case of the Generalized Gamma distribution G(γ,β,λ) for γ = k / 2 and β = 2, where γ is the 
shape parameter, β is the scale parameter and λ is the non-centrality parameter.  
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Table 4. Conditional tabulation of VIX vs. ΔVIX 
   VIX  
   [0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) Total 

[-0.1, -0.05) 0 1 1 6 0 8 
[-0.05, 0) 2 1,244 661 114 8 2,029 
[0, 0.05) 3 1,053 703 130 19 1,908 

ΔVIX 

[0.05, 0.1) 0 0 4 6 2 12 
 Total 5 2,298 1,369 256 29 3,957 

 

 

 

Table 5. Parameter estimates of diffusion and jump diffusion processes over complete sample 

(1/2/1990 to 9/13/2005) 

Parameter SR SRJ SRPJ MRLP MRLPJ 

4.5496 7.3800 10.5004 3.9598 4.4887 
k (5.9778) (9.5121) (11.1326) (5.4873) (6.6083)   

0.1945 0.1505 0.1379 -1.6853 -2.1326 
θ (19.9557) (21.7557) (24.0473) (-29.8494) (-19.4989) 

0.4048 0.3502 0.3294 0.8857 0.7504 
σ (88.0705) (61.3238) (51.3363) (88.2150) (50.3114) 

19,4080 263.8877 41.9585 
λ - (4.5046) (9.1391) - (3.1030) 

0.0170 0.0125 0.068 
1/η - (8.2228) (4.5626) - (6.7492) 

LL 12,263.12 12,422.37 12,459.24 12,485 12,627 

AIC -24,520 -24,835 -24,908 -24,964 -25,244 

BIC -24,501 -24,803 -24,877 -24,929 -25,229 

Numbers in brackets denote t-statistics The table also gives the Log-Likelihood value (LL), the Akaike 
Information Criterion (AIC) and the Bayes Information Criterion (BIC). 
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Table 6. Parameter estimates of diffusion and jump diffusion processes over subsample A 

(1/2/1990 to 1/13/97) and subsample B (1/14/97 to 9/13/2005) 

  SR SRJ SRPJ MRLP MRLPJ 
Parameter A B A B A B A B A B 

6.7809 4.7561   10.0246 7.6445 11.1900 12.6767 6.2675 4.0656 6.5474 5.2050 
k (4.8646) (4.2697) (7.9152) (6.3798) (5.8252) (7.1709) (4.7258) (3.8960) (5.6811) (4.9772) 

0.1682 0.2209 0.1367 0.1780 0.1353 0.1465 -1.8188 -1.5585 -2.0848 -2.2330 
θ (20.0503) (14.8413) (22.6912) (14.0157) (20.9330) (12.2977) (-34.8811) (-20.5860) (-28.1717) (-7.6033) 

0.3843 0.4254 0.3167 0.3840 0.3122 0.3446 0.9143 0.8589 0.7402   0.7444 
σ (61.9047) (62.2626) (46.2252) (38.7842) (35.2948) (26.2871) (62.0300) (62.3677) (43.3197) (25.1828) 

- - 18.7032 21.8095 149.9526 478.5668   26.1822 132.5710 
λ   (3.5102) (2.3767) (1.9034) (2.5111)   (3.1695) (1.6099) 

- - 0.0172 0.01569 0.0142 0.0090   0.072 0.027 
1/η   (5.7648) (5.0928) (3.5221) (5.7419)   (5.7153) (4.2518) 

LL 6,388 5,888 6,538 5,920 6,547 5,939 6,567 6,010 6,612 6,031 
AIC -12,770 -11,770 -13,066 -11,868 -13,084 -11,868 -13,128 -12,014 -13,214 -12,052 
BIC -12,753 -11,753 -13,038 -11,840 -13,056 -11,840 -13,096 -11,982 -13,201 -12,039 

Numbers in brackets denote t-statistics The table also gives the Log-Likelihood value (LL), the Akaike 
Information Criterion (AIC) and the Bayes Information Criterion (BIC). 
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Figure 1. The VIX Index and first differences (ΔVIX) 
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Figure 2. Histograms and Kernel Distributions of VIX Index and first differences (ΔVIX) 
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Densities were estimated with Epanechikov kernel functions over 100 points. The bandwidth was 
determined according to the method suggested by Silverman (1986). 
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Figure 3. Value of the volatility call option as a function of time-to-maturity 
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Estimated for three different moneyness levels: 20% in-the-money (ITM), at-the-money (ATM) and 20% out-of-the-
money (OTM). The solid line corresponds to the case where there are no jumps in the volatility process (i.e., model of 
Detemple and Osakwe, 2000) using the estimated parameters k, θ, and σ  from Table 5, fifth column. The dotted line 
corresponds to the case where there are upwards jumps in the volatility process using the estimated parameters k, θ, σ , 
η , λ from Table 5, sixth column. We assume that r = 5% and Vt =15%. 
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Figure 4. Delta of the volatility call option as a function of time-to-maturity 
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Estimated for three different moneyness levels: 20% in-the-money (ITM), at-the-money (ATM) and 20% out-of-the-
money (OTM). The solid line corresponds to the case where there are no jumps in the volatility process (i.e., model of 
Detemple and Osakwe, 2000) using the estimated parameters k, θ, and σ  from Table 5, fifth column. The dotted line 
corresponds to the case where there are upwards jumps in the volatility process using the estimated parameters k, θ, σ , 
η , λ from Table 5, sixth column. We assume that r = 5% and Vt =15%. 
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Figure 5. Delta of the volatility call option as a function of volatility 
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Estimated for three different maturities: short (5 days), intermediate (20 days) and long (40 days). The solid line 
corresponds to the case where there are no jumps in the volatility process (i.e., model of Detemple and Osakwe, 2000) 
using the estimated parameters k, θ, and σ  from Table 5, fifth column. The dotted line corresponds to the case where 
there are upwards jumps in the volatility process using the estimated parameters k, θ, σ , η , λ from Table 5, sixth 
column. We assume that r = 5% and Vt =15%. 
 


