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Abstract

This paper provides a set-theoretic model of knowledge and unawareness. A new
property called Awareness Leads to Knowledge shows that unawareness of theorems
not only constrains an agent’s knowledge, but also, can impair his reasoning about
what other agents know. For example, in contrast to Li (2006), Heifetz et al. (2006)
and the standard model of knowledge, it is possible that two agents disagree on whether
another agent knows a particular event. The model follows Aumann (1976) in defining
common knowledge and characterizing it in terms of a self evident event, but departs
in showing that no-trade theorems do not hold.

1 Introduction

1.1 Motivation and outline

A common assumption in economics is that agents who participate in a model perceive the
“world” the same way the analyst does. This means that they understand how the model
works, they know all the relevant theorems and they do not miss any dimension of the
problem they are facing. In essence, agents are as educated and as intelligent as the analyst
and they can make the best decision, given their information and preferences.

Modeling unawareness aims at relaxing this assumption, so that agents may perceive a
more simplified version of the world. Intuitively, there are many instances where agents
of different perception coexist in the same market. In the stock market, for example, one
can find investors who are highly educated about how the market and the economy work,
together with investors whose understanding is much more limited.

∗I am grateful to Larry G. Epstein and Paulo Barelli for their continuous guidance and encouragement
throughout this project. I would also like to thank Jan Eeckhout, Jeffrey Ely, Yossi Feinberg, Dino Gerardi,
Aviad Heifetz, Jing Li, Bart Lipman, Martin Meier, Alessandro Pavan, Burkhard Schipper, William Thom-
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One way in which we might hope to capture differences between these two types of
investors is by attributing differences to asymmetric information. The standard model of
knowledge and asymmetric information was introduced into economics by Aumann (1976).
Its simplicity and the fact that it was purely set-theoretic led to many economic applications.1

However, Dekel et al. (1998) showed that this model cannot accommodate unawareness.
Moreover, it can be criticized on the grounds that it only models a highly sophisticated
and rational agent, who is aware of everything, knows all the possible theorems that can be
derived and has no constraints on the number of calculations he can perform.

This paper provides a model of knowledge and awareness, where agents may not know
some of the relevant theorems, may be unaware of some of the dimensions of the world
and thus can make mistakes. Moreover, the paper does not depart from the set-theoretic
approach of Aumann (1976) and its advantages, while aiming at giving a better insight into
the connection between awareness and knowledge.

Consider the following comparative statics exercise, where an agent gains awareness. He
becomes aware of new events, and some of these he may subsequently know. This effect
of awareness on knowledge is well described by other papers. The second, less immediate
connection is that more awareness can lead to awareness of new theorems, which connect
answers to different questions. As a result, more awareness can lead to knowing an event that
the agent previously was aware of but did not know. Or equivalently, what one is unaware
of, may constrain his knowledge about events he is aware of. This less immediate connection
is not accommodated in the other papers that model unawareness - it is expressed in this
model by the property Awareness Leads to Knowledge.

The implications of this property in a multi agent setting can be stark. The unaware
agent 1 may falsely conclude that agent 2 does not know an event, when in fact agent 2
knows it, because he knows a theorem beyond 1’s awareness.

It is worthwhile noting that these mistakes in reasoning about others (due to unawareness
of theorems) can be accommodated by the standard model of knowledge or the extensions
discussed below, only if we allow for false beliefs. But allowing for false beliefs permits
all kinds of mistakes. For instance, it allows for agents to make numerical mistakes. The
purpose of this paper is to isolate and study this specific type of mistake due to unawareness
of theorems, without relaxing the assumption that agents are otherwise rational.

In order to overcome the impossibility result of Dekel et al. (1998), the paper follows
the approach of Heifetz et al. (2007a) and Li (2006) of introducing multiple state space.
However, it retains the set-theoretic nature exhibited also in the standard model of knowledge
and as a result, familiar notions naturally extend here. For instance, common knowledge is
characterized in terms of a self evident event, just like in the standard model. Moreover,
there is a well defined notion of a common state space. This is the state space that everyone
is aware of and this is common knowledge. As the following discussion on no-trade theorems
reveals, results that are true for the unique state space of the standard model are also true
when stated for the common state space of this model, but fail to hold in general.

1An overview of the standard model of knowledge is given in Rubinstein (1998). A more philosophical
treatment is given in Hintikka (1962).
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A natural question is whether agents can agree to disagree and trade in an environment
with unawareness. In the standard model of knowledge this is not possible, if we assume a
common prior - Aumann (1976) shows that common knowledge of posteriors implies they
are identical. In this model it is shown that the same result is true for common priors and
posteriors defined on the common state space. However, an example with two agents i and j
demonstrates that although the posteriors defined on the common state space are common
knowledge and therefore identical, i’s actual posterior is different and beyond j’s reasoning
because agent i is aware of a theorem that j is unaware of. As a result, the two agents can
agree to disagree and trade.

Intuition for this result can be obtained if we interpret common knowledge of posteriors
as the outcome of the following procedure. Initially the posteriors are different. Agent i
announces his posterior and j updates his information and announces a possibly different
posterior. Then, i can update and announce a different posterior, which triggers a new
round of updating. Geanakoplos and Polemarchakis (1982) show in the standard model
that if the state space is finite, then after finitely many steps the agents will agree on their
posteriors. A necessary condition for this result is that partitions are common knowledge in
the standard model. This is true in this model, but only for the common state space. Hence,
updating of information due to other agents’ actions or announcements still takes place in
an environment with unawareness, but it is constrained by what is commonly known that
everyone is aware of. As a result, agents can engage in trade when the differences in their
posteriors stem from asymmetric information acquired by theorems that others are unaware
of.

An example

Consider the following example, which has been cited numerous times in the literature on
unawareness. Sherlock Holmes and Dr. Watson are investigating a crime where a horse was
stolen from a stable and the keeper was killed. The question they want to answer is whether
there was an intruder in the stable. Holmes is the highly sophisticated and intelligent agent
who has already solved the mystery, while Watson struggles to keep up. Watson is unable
to answer the question because he is unaware that the dog did not bark, and therefore he is
also unaware of the theorem that no barking implies no intruder.

Using the example, we can distinguish three features of unawareness. The first is a
restricted perception of the world, which limits the agent’s reasoning and subsequently what
he can potentially know, or know that he does not know. Watson does not know that the dog
did not bark, and he does not know that he does not know. He also cannot reason whether
Holmes knows whether or not the dog barked. The possibility of the dog not barking simply
never crosses his mind - he is unaware of it.

Watson is already aware of the possibility of an intruder, but he does not know whether
there was one or not. Although the information about the dog not barking is available to
him, he is simply unaware of it. The second feature of unawareness is that readily available
information cannot be used by the agent. In other words, what Watson is unaware of,
constrains his knowledge about events he is aware of.
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The third feature of unawareness is that it constrains an agent’s ability to reason about
the knowledge of others. Unawareness of the theorem “no barking implies no intruder” results
not only in Watson not knowing whether there was an intruder, but also in reasoning that
Holmes does not know. In fact, Watson may be aware of many other ways (or theorems) in
which Holmes could have known (for example, because he asked a police officer), but Watson
has correctly deduced that none of these ways were employed. He therefore inevitably
concludes that Holmes does not know whether there was an intruder. In other words,
Watson’s expressive power is not rich enough to include Holmes’ knowledge of no intruder
through the specific theorem “no barking implies no intruder”. Moreover, Watson, within
the bounds of his awareness, is not making a mistake.

To conclude the example, Holmes and Watson are exposed to the same information
and the standard model would model them as having the same state space and the same
partition. However, Watson’s reasoning is limited in three ways. First, his expressive power
is poorer than Holmes’, limiting the events that he knows and the events he knows that he
does not know. Second, information readily available to Watson is left unexploited, because
he is unaware of its existence. As a result, his knowledge about an event he is aware of
is constrained by a theorem that he is unaware of. Finally, Watson incorrectly deduces
that Holmes does not know whether there was an intruder. This is not a result of a logical
mistake, but of Watson’s constrained reasoning, due to his unawareness of the theorem “no
barking implies no intruder”.

Suppose Holmes pointed out to Watson that the incident of the dog is important. Once
Watson becomes aware of the dog, he can collect the information of the dog not barking that
was always available to him, become aware of the theorem “no barking implies no intruder”,
and answer the question whether there was an intruder. Increased awareness can lead to
increased knowledge about questions that one was already aware of.

1.2 Related literature

Models of knowledge (and of unawareness) are either syntactic or semantic (set-theoretic).
The two approaches are equivalent, but syntactic models are widely used by logicians and
computer scientists, while set-theoretic ones are more common in the economics literature,
following Aumann (1976). Beginning with Fagin and Halpern (1988), there has been a
stream of syntactic models, namely Halpern (2001), Modica and Rustichini (1994, 1999),
Halpern and Rêgo (2005) and Heifetz et al. (2007b). Applications in the context of games
with unawareness have been provided by Feinberg (2004, 2005), Sadzik (2005), Copic and
Galeotti (2006), Li (2006b), Heifetz et al. (2007a), Filiz (2006) and Ozbay (2006).

Geanakoplos (1989) provides one of the first set-theoretic models that deals with unaware-
ness, by using non-partitional information structures, defined on a standard state space.
However, Dekel et al. (1998) propose three intuitive properties for unawareness and show
that they are incompatible with the use of a standard state space. Addressing this im-
possibility result has been achieved with two different approaches. The first is by arguing
against one of the properties (Ely (1998)), or by relaxing them (Xiong (2007)). The second
is by introducing multiple state spaces, one for each state of awareness. This approach was
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initiated by Li (2006) and Heifetz et al. (2006) and is being followed by the present paper.2

Before illustrating the differences between these models, recall that the standard model of
knowledge (Aumann (1976)) specifies a unique state space Ω and a possibility correspondence
P which maps states in Ω to subsets of Ω. The interpretation is that for any ω ∈ Ω, the set
P (ω) denotes the states that the agent considers possible when ω has occurred. In contrast,
modeling unawareness using multiple state spaces leads to a possibility correspondence that
maps states of any possible state space to subsets of possibly different state spaces. The
reason is that awareness varies with the state. For example, suppose that state ω ∈ Ω
specifies that the agent’s awareness is different, so that if ω occurs, the agent’s state space
is Ω′ and not Ω. Then, the set of states that the agent considers possible, P (ω), is a subset
of Ω′ and not of Ω. As a result, a model with unawareness has to impose axioms on the
possibility correspondence P , restricting what it prescribes across different state spaces.

One of the main differences between this model and the set-theoretic models Li (2006)
and Heifetz et al. (2006), is that weaker restrictions are imposed here on what the possibility
correspondence P prescribes across state spaces.

Li assumes a possibility correspondence P , just as in the standard model, which maps full
states to subsets of the full state space Ω∗, which in Li’s terminology is the most complete
state space.3 For each full state ω∗ ∈ Ω∗, P (ω∗) denotes the set of full states that the
agent would consider possible if he were fully aware. In Li’s terminology, P (ω∗) denotes
the agent’s factual information. If the agent is not fully aware at ω∗, so that his state
space is different from the full state space, then what he actually perceives as possible is the
projection of P (ω∗) onto the state space that he is aware of. Similarly, when i reasons about
j’s knowledge, he projects j’s full state partition to i’s state space. Heifetz et al. (2006)
follow a similar approach. Their property “Projections Preserve Knowledge” requires that
if the agent considers states in P (ω) to be possible at ω, then at the projection of ω to a
more limited state space S he considers possible the projection of P (ω) to S. In essence,
these two properties place a restriction on what the possibility correspondence can prescribe
across different state spaces.

In order to illustrate why these two properties are restrictive, recall the Holmes example
depicted in the following figure. The two relevant dimensions or questions of the problem
are “Did the dog bark?” and “Was there an intruder?”. Holmes is always aware of both
questions, so his subjective state space is the full state space, containing the four states
(ω1, ω2, ω3, ω4) on the plane. At state ω4 which specifies that there was no intruder and no
barking, Holmes knows that there is no intruder because he knows that the dog did not bark
and he is also aware of and knows the theorem “no barking implies no intruder”. Hence,
PH(ω4) = ω4.

Watson is aware only of the question “Was there an intruder?”. His subjective state space
consists of states ω5 and ω6 on the horizontal axis. As modeled by Li (2006) and Heifetz et al.
(2006), when Watson reasons at ω6 about Holmes’ knowledge, he projects PH(ω4) = ω4 to

2Halpern and Rêgo (2005) and Heifetz et al. (2007b) provide syntactic foundations of Heifetz et al. (2006).
3Since the full state space Ω∗ is the most complete state space, only an agent who is aware of all possible

questions, is also aware of Ω∗. A full state ω∗ is an element of the full state space.
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Figure 1: Projecting knowledge downwards.

his state space. Therefore, he reasons that PH(ω6) = ω6 and that Holmes knows at ω6 that
there is no intruder. Although Watson is unaware of any theorem that could lead someone
to know whether there is an intruder, he nevertheless is able to correctly deduce that Holmes
knows at ω6.

In order to accommodate the example so that Watson reasons that Holmes does not know
whether there is an intruder, we have to abandon projections.4 When Watson reasons about
Holmes at ω6, he is unaware of the theorem “no barking implies no intruder” and therefore
he cannot reason that Holmes is aware of it. As a result, PH(ω6) = {ω5, ω6} and Watson
reasons that Holmes does not know. This is depicted in the following figure.

The example suggests that unawareness can restrict Watson’s reasoning about Holmes’
knowledge, concerning an event that both are aware of. This is not captured in other papers
that model unawareness. Moreover, Watson formally makes no mistake. It is true that
with Watson’s awareness, Holmes would not know that there is no intruder and Watson
can reason only up to his awareness. Essentially, there are two different views of Holmes’
knowledge. This is formally captured in this model by creating one knowledge operator for
each state of awareness. If Watson’s state space is S, then his view of Holmes’ knowledge
is KS. But Holmes’ state space is S ′, so his view of Holmes’ knowledge is KS′ . Moreover,
S ′ is “more expressive” than S. In the model this is captured by having a partial order ¹
on the collection of state spaces. The relationship between the two different views about
knowledge is given by the property Awareness Leads to Knowledge. It states that if S ′ is
more expressive than S, then KS′ gives a better description of one’s knowledge than KS.
Heifetz et al. (2006) specify one knowledge operator K so that there is always one objective
view of Holmes’ knowledge.

4The only other way of accommodating the example is by allowing for false beliefs. But as was argued
before, this carries the excess baggage of allowing for any kind of false beliefs, even those unrelated to
unawareness.
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Figure 2: Allowing for unawareness of theorems.

The paper proceeds as follows. Section 2 introduces the basic single-agent model, while
its main results are presented in Section 3. Section 4 describes the multi-agent model; in
particular, common knowledge is defined and characterized in terms of a self evident event.
Section 5 examines no-trade theorems. Proofs are contained in the Appendix.

2 The Model

Consider a complete lattice of disjoint state spaces S = {Sa}a∈A and denote by Σ = ∪a∈ASa

the union of these state spaces. A state ω is an element of some state space S. Let ¹ be
a partial order on S. For any S, S ′ ∈ S, S ¹ S ′ means that S ′ is more expressive than S.
Moreover, there is a surjective projection rS′

S : S ′ → S. Projections are required to commute.
If S ¹ S ′ ¹ S ′′ then rS′′

S = rS′
S ◦ rS′′

S′ . If ω ∈ S ′, denote ωS = rS′
S (ω) and ωS′′ = (rS′′

S′ )
−1(ω). If

B ⊆ S ′, denote BS = {ωS : ω ∈ B} and BS′′ = {ωS′′ : ω ∈ B}. Let g(S) = {S ′ : S ¹ S ′} be
the collection of state spaces that are at least as expressive as S. For a set B ⊆ S, denote
by B↑ =

⋃
S′∈g(S)(r

S′
S )−1(B) the enlargements of B to all state spaces which are at least as

expressive as S.
Consider a possibility correspondence P : Σ → 2Σ \ ∅ with the following properties:

(0) Confinedness: If ω ∈ S then P (ω) ⊆ S ′ for some S ′ ¹ S.

(1) Generalized Reflexivity: ω ∈ (P (ω))↑ for every ω ∈ Σ.

(2) Stationarity: ω′ ∈ P (ω) implies P (ω′) = P (ω).

(4) Projections Preserve Awareness: If ω ∈ S ′, ω ∈ P (ω) and S ¹ S ′ then ωS ∈ P (ωS).

(3) Projections Preserve Ignorance: If ω ∈ S ′ and S ¹ S ′ then (P (ω))↑ ⊆ (P (ωS))↑.
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(5) Projections Preserve Knowledge: If S ¹ S ′ ¹ S ′′, ω ∈ S ′′ and P (ω) ⊆ S ′ then
(P (ω))S = P (ωS).

The setting above is identical to that of Heifetz et al. (2006). The first difference with the
present model is that we drop the last axiom, Projections Preserve Knowledge (PPK). To
argue against PPK, consider the example in the introduction. There are two different state
spaces, S ′ = S ′′ = {ω1, ω2, ω4} and S = {ω5, ω6}. At ω4, Holmes is aware of the theorem “no
barking implies no intruder” and he knows that there is no intruder. Hence, P (ω4) = ω4.
Since the projection of ω4 to S is ω6, PPK implies that P (ω6) = ω6. As was argued in the
introduction, this is restrictive. In order to allow for P (ω6) = {ω5, ω6}, we drop PPK.

2.1 Events, awareness and knowledge

Dropping PPK means that we need to also change the definitions of knowledge, awareness
and events. In the setting of Heifetz et al. (2006), a subset E ⊆ Σ is an event if it is of
the form B↑, where B ⊆ S for some state space S ∈ S. Hence, an event in their setting
contains states lying in different state spaces. For an event E, knowledge of E is defined to
be K(E) = {ω ∈ Σ : P (ω) ⊆ E}. Similarly, the negation of K(E) is ¬K(E) = {ω ∈ Σ :
P (ω) * E}. With PPK, K(E) and ¬K(E) are also events, so Ki¬KjKk(E), for example,
is a well defined event.

However, if we drop PPK then K(E) and ¬K(E) may not be events. To see why, consider
again the example in figure 2 where, dropping PPK, we have P (ω5) = P (ω6) = {ω5, ω6},
P (ω4) = ω4 and P (ω1) = P (ω2) = {ω1, ω2}. Let E = {ω6, ω4, ω2} be the event “there
is no intruder”. Then, ¬K(E) = {ω1, ω2, ω5, ω6}. But ¬K(E) is not an event, because
{ω5, ω6}↑ 6= ¬K(E), so it is not of the form B↑, where B ⊆ S.

As was suggested in the introduction, dropping PPK allows for differences in awareness to
imply different views about knowledge. In the example, Watson’s view of Holmes’ knowledge
is different from Holmes’ view. Hence, there is not one, objective, knowledge but several
subjective ones, for each state of awareness. This is formally captured by defining KS(E)
for each state space S ∈ S.

Moreover, allowing for different views of knowledge requires that we also change the
definition of an event. The reason is that KS(E) describes “knowledge of E, with the
vocabulary of state space S”. Since we want KS(E) to be an event, we require that an event
is a subset of some state space. Hence, contrary to Heifetz et al. (2006), an event does not
contain states lying in different state spaces.

Formally, an event E is a subset of some (necessarily unique) state space S ∈ S. The
negation of E, denoted by ¬E, is the complement of E with respect to S. Denote the
complement of S by ∅S. Let E = {E ⊆ S : S ∈ S} be the union of all events. For each
event E, let S(E) be the state space of which it is a subset. An event E “inherits” the
expressiveness of the state space of which it is a subset. Hence, we can extend ¹ to a partial
order ¹0 on E in the following way: E ¹0 E ′ if and only if S(E) ¹ S(E ′). Abusing notation,
we write ¹ instead of ¹0.
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Before defining knowledge, we need to define awareness. For any event E, for any state
space S such that E ¹ S, define

AS(E) = {ω ∈ S : E ¹ P (ω)}
to be the event which describes, with the vocabulary of S, that the agent is aware of event
E. The condition E ¹ S imposes that only a state space rich enough to describe E, can
also describe the agent’s awareness of E. The agent is aware of an event if his possibility
resides in a state space that is rich enough to express event E. Unawareness is defined as
the negation of awareness. More formally, the event US(E) describes, with the vocabulary
of S, that the agent is unaware of E:

US(E) = ¬AS(E).

Let Ω : Σ → S be such that for any ω ∈ Σ, Ω(ω) = S if and only if P (ω) ⊆ S. Ω(ω)
denotes the agent’s state space at ω. An agent knows an event E if he is aware of it and in
all the states he considers possible, E is true. Formally, for any event E and for any state
space S such that E ¹ S, define

KS(E) = {ω ∈ AS(E) : P (ω) ⊆ EΩ(ω)}.

3 Results

3.1 Overview of the properties of the standard model

Consider a state space Ω and a possibility correspondence P : Ω → 2Ω\∅. The interpretation
is that when ω ∈ Ω occurs, the agent reasons that one state in P (ω) has occurred. An event E
is a subset of Ω. Knowledge of events is represented by the knowledge operator K : 2Ω → 2Ω.
In particular, for any event E ⊆ Ω,

K(E) = {ω ∈ Ω : P (ω) ⊆ E}.
Thus the agent knows event E at ω if in all the states he considers possible, E is true. Note
that K(E) is also an event, since it is a subset of Ω.

It is assumed that the possibility correspondence P satisfies the following properties:

P1 For any ω ∈ Ω, ω ∈ P (ω).

P2 For any ω, ω′ ∈ Ω, ω′ ∈ P (ω) implies P (ω′) ⊆ P (ω).

P3 For any ω, ω′ ∈ Ω, ω′ ∈ P (ω) implies P (ω′) ⊇ P (ω).

The first property says that the agent never excludes the true state from being possible.
The second property states that if the agent knows an event E at ω and he considers ω′ to
be possible, then he will also know E at ω′. The third property states that if the agent does
not know an event E at ω and he considers ω′ to be possible, then he will also not know E
at ω′.

The following properties hold for the knowledge operator:
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K1 Necessitation: K(Ω) = Ω.

K2 Monotonicity: E ⊆ F =⇒ K(E) ⊆ K(F ).

K3 Conjunction: K(E) ∩K(F ) = K(E ∩ F ).

K4 The Axiom of Knowledge: K(E) ⊆ E.

K5 The Axiom of Transparency: K(E) ⊆ K(K(E)).

K6 The Axiom of Wisdom: ¬K(E) ⊆ K(¬K(E)).

Properties K1, K2, K3 are derived from the definition of the knowledge operator K, while
property P1 implies K4, P2 implies K5 and P3 implies K6.

3.2 Results

The next property is the most important departure from other models dealing with unaware-
ness.

Proposition 1. Awareness Leads to Knowledge
If E ¹ S ¹ S ′ then KS(E) ⊆ (KS′(E))S ∩ AS(E).

The condition E ¹ S ¹ S ′ ensures that S and S ′ are rich enough to describe the agent’s
knowledge and awareness of E, so that KS(E), KS′(E) and AS(E) are well defined. The
property says that state spaces which are more expressive give a more complete description
of the agent’s knowledge. In other words, whatever we capture by describing knowledge with
S, we can capture by describing knowledge with the more expressive S ′. But the converse is
not true.

Recall the example in the introduction. On the one hand, Holmes is aware of S ′ and
state ω ∈ S ′ specifies that the dog did not bark, there is no intruder, and because of the
theorem “no barking implies no intruder”, Holmes knows event E, “there is no intruder”.
Hence, ω ∈ KH

S′(E). On the other hand, Watson is aware of S, and his limited perception
of the truth is ωS, specifying that there is no intruder and that Holmes is aware of E, so
ωS ∈ AH

S (E). The property allows for ωS /∈ KH
S (E), so that according to Watson’s limited

view, Holmes does not know E at ωS. As was argued in the introduction, the reason behind
Watson’s faulty reasoning about Holmes is Watson’s unawareness of the theorem “no barking
implies no intruder”.

Intuitively, if a state space is more complete then it may also include more “theorems”,
and in effect contain more ways in which an agent can know an event. Conversely, what an
agent is unaware of constrains his knowledge about events he is aware of. In the multi-agent
case an agent’s limited awareness may lead to incomplete reasoning about other agents’
knowledge. See Section 4.1 for further discussion and illustration of this property in the
multi-agent context.

This feature is new. On the one hand, the standard model assumes an agent who is aware
of everything and knows all relevant theorems. On the other hand, the property Projections
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Preserve Knowledge of Heifetz et al. (2006) implies that KS(E) = (KS′(E))S ∩ AS(E).
Nothing is lost by describing knowledge in less expressive state spaces.

Concluding, more awareness can lead to increased knowledge of events that we were al-
ready aware of. For example, becoming aware of (and knowing) Newton’s theory enabled
us to explain how the planets move, a question of which we were aware since ancient times.
Equivalently, what we are unaware of constrains our knowledge about things we are aware
of. The reason is that information that is readily available to us (for example, the distance
between the planets and their size) is left unexploited, either because we are unaware of
its existence, or because we do not have the theorems that utilize this information in order
to provide answers. Aragones et al. (2005) argue that these phenomena can be partly ex-
plained by computational complexity. An agent may learn something without getting new
information, just by noticing certain regularities in the data he observes and by forming new
theorems.

The next theorem verifies properties that have been proposed in the literature, or are
generalizations of properties of the standard model.

Theorem 1. Suppose E, F ¹ S. Then,

1. Subjective Necessitation For all ω ∈ S, ω ∈ KS(Ω(ω)).

2. Generalized Monotonicity ES(E)∨S(F ) ⊆ FS(E)∨S(F ), F ¹ E =⇒ KS(E) ⊆
KS(F ).5

3. Conjunction KS(E) ∩KS(F ) = KS

(
ES(E)∨S(F ) ∩ FS(E)∨S(F )

)
.

4. The Axiom of Knowledge KS(E) ⊆ ES.

5. The Axiom of Transparency ω ∈ KS(E) ⇐⇒ ω ∈ KS(KΩ(ω)(E)).

6. The Axiom of Wisdom ω ∈ AS(E)∩¬KS(E) ⇐⇒ ω ∈ KS(AΩ(ω)(E)∩¬KΩ(ω)(E)).

7. Plausibility US(E) ⊆ ¬KS(E) ∩ ¬KS(¬KS(E)).

8. Strong Plausibility US(E) ⊆ ¬KS(E)∩¬KS(¬KS(E))∩. . .∩¬KS(¬KS(. . .¬KS(E))).

9. AU Introspection US(E) ⊆ US(US(E)).

10. KU Introspection KS(US(E)) = ∅S.6

11. Symmetry US(E) = US(¬E).

12. AA-Self Reflection ω ∈ AS(E) ⇐⇒ ω ∈ AS(AΩ(ω)(E)).7

13. AK-Self Reflection ω ∈ AS(E) ⇐⇒ ω ∈ AS(KΩ(ω)(E)).8

5A variant of this property states that if ω ∈ KS(E), F ¹ Ω(ω) and EVE∪VF ⊆ FVE∪VF , then ω ∈ KS(F ).
6 A variant of this property is ω /∈ KS(UΩ(ω)(E)) for all ω ∈ S.
7A variant of this property is ω ∈ AS(E) ⇐⇒ ωΩ(ω) ∈ AΩ(ω)(AΩ(ω)(E)).
8A variant of this property is ω ∈ AS(E) ⇐⇒ ωΩ(ω) ∈ AΩ(ω)(KΩ(ω)(E)).
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14. A-Introspection ω ∈ AS(E) ⇐⇒ ω ∈ KS(AΩ(ω)(E)).9

The first six properties are generalizations of the six properties of the standard model,
cited in Section 3.1. Some of these generalizations are proposed by Li (2006). Plausibility,
Strong Plausibility, AU Introspection and KU Introspection are proposed by Dekel et al.
(1998). Symmetry, AA-Self Reflection, AK-Self Reflection and A-Introspection are proposed
by Modica and Rustichini (1999) and Halpern (2001).

Subjective necessitation states that at any state ω, the agent knows his state space, which
is Ω(ω). Generalized monotonicity says that if at ω the agent knows event E, he is aware of
F and E implies F , then he knows F . These two events may be subsets of different state
spaces, so the usual notion of implication, E ⊆ F , is not defined. Li (2006) has proposed
a generalized version of implication: The event E implies the event F if the enlargement
of E to the join of spaces S(E) and S(F ) is a subset of the respective enlargement of F .
Conjunction states that the agent knows events E and F if and only if he knows that E and
F have occurred. If E and F are subsets of different state spaces then their conjunction is
take to be the intersection of their enlargements to the meet of state spaces S(E) and S(F ).

The Axiom of Knowledge specifies that whenever an agent knows an event, then this
event is true. The next two properties generalize the axioms of transparency and wisdom.
The Axiom of Transparency states that the agent knows an event E at ω if and only if he
knows that he knows it at ω. Note that KΩ(ω)(E) is the event “the agent knows event E”,
expressed in the awareness of the agent at ω. The Axiom of Wisdom is similar. The agent
is aware of but does not know event E if and only if he knows that he is aware of and does
not know it.

Plausibility states that if the agent is unaware of an event, then he does not know it, and
he does not know that he does not know it. Strong Plausibility extends the result for any
higher order of not knowing that he does not know. AU Introspection specifies that if the
agent is unaware of an event, then he is unaware that he is unaware of it. KU Introspection
states that the agent cannot know that he is unaware of an event E.

Symmetry states that if an agent is unaware of an event, then he is also unaware of its
negation. Properties AA-Self Reflection, AK-Self Reflection and A-Introspection say that
equivalent conditions for an agent to be aware of an event is that he is aware that he is aware
of it, he is aware that he knows it and he knows that he is aware of it.

4 Multi-agent model

4.1 Unawareness and reasoning about others

In a multi-agent context, the property Awareness Leads to Knowledge implies that i’s limited
awareness may impair his reasoning about j’s knowledge. For example, it may be that while
i is aware of E, he wrongly deduces that j does not know it, exactly because i is unaware of
the theorem that led j to know E. This clearly distinguishes the present approach from that

9A variant of this property is ω ∈ AS(E) ⇐⇒ {ω}Ω(ω) ∈ KΩ(ω)(AΩ(ω)(E)).
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of Li (2006) and Heifetz et al. (2006), which do not allow for such information processing
errors.

To illustrate, suppose that agent i’s state space is Si, while agent j’s state space is Sj and
Sj ¹ Si, so that i is more aware than j. They are both reasoning whether agent k knows
event E. Suppose that both i and j are informed that the true state has occurred. That is,
i is informed that ω has occurred, while j is informed that ωSj has occurred, which is the
projection of ω to the more limited state space. Moreover, suppose that ω ∈ Kk

Si(E) but
ωSj /∈ Kk

Sj(E), which is permitted by the Awareness Leads to Knowledge property. Since i
knows that ω has occurred and j knows that ωSj has occurred, it is the case that i knows
that k knows event E, while j knows that k does not know event E! Agents i and j disagree
on what k knows.

It is important to emphasize that j’s information processing error about k’s knowledge
is due to j’s unawareness, not due to j’s logical mistakes. Agent j is not excluding the true
state, he merely perceives a limited version of the truth.

The standard model of knowledge excludes the possibility of two agents disagreeing about
what a third agent knows. To be more precise, it can never be that i knows that k knows
an event, while j knows that k does not know this event. Clearly, if this were to happen
then one agent would be wrong, and the Axiom of Knowledge would be violated. Li (2006)
and Heifetz et al. (2006) also exclude such a possibility, because they assume that i’s view of
j’s knowledge is the projection of P j to i’s state space. On the contrary, the present model
allows for such a possibility without violating the Axiom of Knowledge, because knowledge
is defined “locally”, for each state space.

Consider the following example which illustrates how two agents can disagree on what a
third agent knows. Suppose that agent k is inside a basement with no windows, and that
it is raining. Agent j is informed that k is inside the basement, so he reasons that because
k cannot see what is happening outside, he does not know that it is raining, and j knows
that this is the case. On the other hand, agent i is aware of and knows the existence of a
computer in the basement, connected with a camera outside the building. If he is informed
that k is also aware of and knows this, then he can reason that k can see whether it is raining
by checking the computer. Moreover, he knows that this is the case. Concluding, the more
aware agent i knows that k knows that it is raining, while the less aware agent j knows that
k does not know whether it is raining.

It is worth emphasizing that the source of the two agents’ disagreement stems from
their different awareness, not from their different information. Had j been aware of the
possibility of a computer in the basement, even if he did not know whether it is connected
with a camera or whether k was aware of it, would enable him to say that he did not know
whether k knows that it is raining. In that case, i and j would not disagree, but i would
have more information. It is precisely the fact that j is unaware of the possibility of the
computer that makes him know that k does not know that it is raining. Moreover, j is not
making any mistakes, because it is true that with this limited awareness, k would not know
whether it rained. Finally, this disagreement can only occur if what one agent is unaware
of, constrains his knowledge about what he is aware of, so that the “ Awareness Leads to
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Knowledge” property is necessary.
As an epilogue to this example, suppose that agent k performs a specific action if and

only if he knows that it is raining. Moreover, suppose that agent j knows this and k’s action
is visible to him. Since j knows that k does not know that it is raining, he reasons that
k should not perform this action. Nevertheless, he observes him performing it. If agent j
excludes the possibility that he has made some mistake in his reasoning, then he can only
conclude that k is aware of something that j is not aware of, that led him to know that it is
raining. In other words, agent j understands that he is unaware of something that he cannot
specify.

4.2 Common knowledge

An event is common knowledge if everyone knows it, everyone knows that everyone knows it
and so on, ad infinitum. The extra complication that arises when defining common knowledge
in the present setting is that every agent has possibly different awareness. The property
Awareness Leads to Knowledge shows that differences in awareness imply differences in
reasoning about knowledge. Hence, an agent has to reason about other agents’ awareness,
before reasoning about their knowledge.

To give an example, suppose ω ∈ S specifies that P i(ω) ⊆ Ωi(ω), so agent i is aware
of state space Ωi(ω). Agent i’s reasoning about j’s knowledge of event E is represented by
event Kj

Ωi(ω)
(E), because Ωi(ω) is the most complete state space that i is aware of.10 When i

reasons about j’s reasoning about k’s knowledge of E, i first has to specify what is j’s most
complete state space. If we denote this by Ωij(ω), then i’s view of j’s view of k’s knowledge
of E is the event Kk

Ωij(ω)(E).

What remains to be determined is Ωij(ω), i’s view of j’s most complete state space at ω.
Note that state ω′ ∈ Ωi(ω) specifies that j’s state space is Ωj(ω′). But i does not necessarily
know what state has occurred - he only knows that one state in P i(ω) has occurred. Ωij(ω)
is therefore defined to be the most complete state space that i knows that j is aware of, at
ω:

Ωij(ω) =
∧

ω′∈P i(ω)

Ωj(ω′).

This is the meet of all (most complete) state spaces that, according to i’s knowledge, j could
be aware of.

At ω, agent i’s view of the event “j knows that k knows E” is the set Kj
Ωi(ω)

Kk
Ωij(ω)(E).

The event “i knows Kj
Ωi(ω)

Kk
Ωij(ω)(E)” is the set

Ki
SKj

Ωi(ω)
Kk

Ωij(ω)(E).

Note that K i
SKj

Ωi(ω)
Kk

Ωij(ω)(E) is a subset of S. This event depends on ω, which determines
i’s awareness and knowledge, and therefore i’s view of j’s awareness.

10Recall that the Awareness Leads to Knowledge shows that more complete state spaces give a better
description of one’s knowledge.
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Before expanding the sequence of agents we need to define, for any event E and any
agent i, the set P i(E), which denotes the set of states that agent i considers possible when
the true state lies in E.

Definition 1. For any event E,

P i(E) =
⋃

ω∈E

(P i(ω))Si
E
,

where Si
E =

∧
ω∈E

Ωi(ω).

This is analogous to the definition of P i(E) =
⋃

ω∈E

P i(ω) in the standard model.11 The

extra complication that arises in the present model is that different states in E may describe
different awareness for agent i, and therefore the sets P i(ω) and P i(ω′) for ω, ω′ ∈ E may
be subsets of different state spaces. Si

E denotes the meet of these different state spaces and
we project P i(ω) and P i(ω′) to that state space.

We can now define the state space that at ω, i knows that j knows that k is aware of to
be

Ωijk(ω) =
∧

ω′∈P j(P i(ω))

Ωk(ω′).

The event “at ω, i knows that j knows that k knows that l knows event E” is

Ki
SKj

Ωi(ω)
Kk

Ωij(ω)K
l
Ωijk(ω)(E).

Adding more agents to the sequence can easily be accommodated. For any k ≥ 2, define

Ωi1i2...ik(ω) =
∧

ω′∈P ik−1(...(P i2 (P i1 (ω))))

Ωik(ω′)

to be the state space that i1 knows that i2 knows that . . . that ik is aware of at ω.
The following definition of common knowledge is analogous to that of the standard model.

The only difference is that each knowledge operator K is expressed in a particular state space.

Definition 2. Event E ¹ S is common knowledge among agents i = 1, . . . , I at ω ∈ S if
and only if for any n ∈ N and any sequence of agents i1, . . . , in,
ω ∈ K i1

S Ki2
Ωi1 (ω)

K i3
Ωi1i2 (ω)

. . . Kin
Ωi1i2...in−1 (ω)

(E).12

Let CKS(E) be the subset of S describing that E is common knowledge. If S is the
uppermost state space then CKS(E) is the analyst’s or fully aware agent’s perception of

11For details, see Geanakoplos (1992).
12Ki1

S Ki2
Ωi1 (ω)

Ki3
Ωi1i2 (ω)

. . . Kin

Ωi1i2...in−1 (ω)
(E) is defined if E ¹ Ωi1i2...in−1(ω). By definition, for any n ≥ 2,

Ωi1i2...in(ω) ¹ Ωi1i2...in−1(ω).
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common knowledge.13 If S is not the uppermost state space then we get the agent’s view
of common knowledge. One of the main results of the paper is that more complete state
spaces give a better description of one’s knowledge. Similarly, they give a better description
of common knowledge. This property is expressed in the following Lemma.

Lemma 1. If E ¹ S ¹ S ′ then CKS(E) ⊆ (CKS′(E))S.

Just as in the standard model, there is an equivalent definition of common knowledge,
which employs the possibility correspondences P i, instead of the knowledge operators Ki.

Proposition 2. Event E is common knowledge among agents i = 1, . . . , I at ω if and only
if for any n ∈ N and any sequence of agents i1, . . . , in, E ¹ Ωi1...in(ω) and

P in . . . P i2P i1(ω) ⊆ EΩi1...in (ω).

4.3 Common knowledge of awareness

Define Ω∧(ω) to be the meet of all state spaces Ωi1...in(ω), for any sequence i1, i2, . . . , in,
n ∈ N:

Ω∧(ω) =
∧

i1...in
n∈N

Ωi1...in(ω).

Lemma 2. Ω∧(ω) is common knowledge at ω ∈ S. Moreover, if E ∈ E is common knowledge
at ω then E ¹ Ω∧(ω).

The Lemma states that each state ω specifies a “common” state space Ω∧(ω), that every
agent is aware of and this fact is common knowledge. Moreover, Ω∧(ω) is the most complete
state space with this property, because any event E that is common knowledge at ω can be
expressed within the vocabulary of Ω∧(ω).

4.4 Characterizing common knowledge

In the standard model an event E∗ is common knowledge at ω if and only if there is an event
E which is self evident for all agents, it contains ω and is a subset of E∗. The following two
theorems provide a similar characterization of common knowledge in an environment with
unawareness. The definition of a self evident event is given below, and it is a direct analog
of the standard definition. Recall that if E is an event then S(E) is the state space of which
it is a subset.

Definition 3. Event E is self evident for i ∈ I if E ⊆ Ki
S(E)(E). If E is self evident for all

i ∈ I, then it is called public.

13Such a space exists because S is assumed to be a complete lattice.
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An event E is self evident for agent i ∈ I if whenever it happens, the agent knows it. It is
public if everyone knows it.

The following theorem provides sufficient conditions for event E∗ to be common knowl-
edge. In particular, suppose that there is a public event E, whose enlargement to state
space S contains ω ∈ S, it is more expressive than E∗ (E∗ ¹ E) and it is a subset of the
enlargement of E∗ to S. Then E∗ is common knowledge at ω.

Theorem 2. Suppose event E is public and there is another event E∗ such that E∗ ¹ E ¹ S
and ω ∈ ES ⊆ E∗

S. Then, E∗ is common knowledge at ω.

Although in the standard model the existence of a public event with the aforementioned
properties is also a necessary condition for common knowledge, this is not true here. However,
there is a necessary and sufficient condition for the existence of such a public event. Let
Sω = {S ∈ S : S = Ωi1...in(ω) for some sequence ii, . . . , in} be the collection of state spaces
that agents “reach” when reasoning about their awareness and knowledge. Consider the
following property.

Definition 4. Suppose that E ¹ Ω∧(ω).14 Moreover, for any sequence i1, . . . , in, for any
S ∈ Sω, we have

ωS ∈ Ki1
S K i2

Ωi1(ωS)
. . . K in

Ωi1...in−1 (ωS)
(E).

Then, ωΩ∧(ω) ∈ K i1
Ω∧(ω) . . . K in

Ω∧(ω)(E) for any sequence i1, . . . , in.

This is effectively a continuity property. Every S ∈ Sω is more expressive than Ω∧(ω),
and elements in Sω get arbitrarily close to Ω∧(ω). The property states that if ωS specifies
that “i1 knows that . . . in knows E” for every such S, then the same is true at the limit,
which is Ω∧(ω). Say that knowledge of E is continuous at ω if this condition is satisfied.
Lemma 6 in the appendix shows that PPK implies continuity for any event E and any ω.
The following theorem shows that this continuity is necessary and sufficient for the existence
of a public event with the two needed properties.

Theorem 3. Suppose E∗ is common knowledge at ω ∈ S. Then, there exists a public event
E such that E∗ ¹ E ¹ S and ω ∈ ES ⊆ E∗

S if and only if knowledge of E∗ is continuous at
ω.

Li (2006) also gives a characterization of common knowledge, under two assumptions
that are not needed here.15 The first is that what the agent knows about one question does
not depend on the answers of any other question; that is, there is no correlation between
answers of different questions. The second assumption is that if two full states specify the
same answer for a particular question, then the agent will either be aware of that question
in both states, or unaware of it in both states. This means that there can be no correlation
between the awareness of a particular question and the answers of other questions.

14This condition ensures that the event Ki1
Ω∧(ω) . . . Kin

Ω∧(ω)(E) is well defined.
15The primitives in Li’s model are questions and their respective answers.
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5 No-trade theorems

The standard model of knowledge specifies that asymmetric information alone cannot explain
trade. In this section we provide, with an example and a theorem, an explanation of why
agents with asymmetric information and asymmetric awareness can engage in trade.

The literature on no-trade theorems stems from the well known result of Aumann (1976)
that if agents have common priors and their posteriors about an event are common knowl-
edge, then these posteriors must be identical. This section shows that in an environment
with unawareness the same result is true only for common priors and posteriors which are
defined on the “common” state space, which is the state space that not only everyone is
aware of, but it is also common knowledge that everyone is aware of. However, as the prop-
erty Awareness Leads to Knowledge suggests, state spaces which carry more awareness give
a more complete description of one’s knowledge and posteriors. An example with two agents
shows that although the posteriors defined on this “common” state space are common knowl-
edge and therefore identical, there still can be trade because one agent’s higher awareness
implies that his actual posterior is different and beyond the other agent’s reasoning.

Recall that in the standard model without unawareness and given a prior µ on the unique
state space Ω we can define i’s posterior of event E at ω′ ∈ Ω using Bayes’ law:

qi(E)(ω′) =
µ(P i(ω′) ∩ E)

µ(P i(ω′))
. (1)

Every state in Ω specifies a posterior about event E for each agent. The posteriors are
common knowledge at a state ω if an event specifying a single posterior for each agent is
common knowledge at ω.

Translating the above in an environment with unawareness gives rise to the following
complications. The first is that agents typically have different subjective state spaces, since
they have different awareness. Because we need to specify a prior for each state space, the
definition of a common prior needs to be generalized. In what follows, we impose a common
prior µ on the common state space S and require that if S ′ is more expressive than S,
(S ¹ S ′) then the marginal of prior µ′ (defined on S ′) is µ. Note that given µ, there are
many µ′ that satisfy this condition.

The second complication is that the multiplicity of state spaces implies that each state of
any state space defines a possibly different posterior for each agent. However, as Lemma 2
shows, posteriors can be common knowledge only if they are defined on the “common” state
space or a less complete state space. Since state spaces generated by more awareness give a
more complete specification of an agent’s posterior, it is meaningful to talk about posteriors
being common knowledge only if they are defined on this common state space.

Let I = {i, j} and suppose µ is a prior on Ω∧(ω), the most complete state space that it
is commonly known at ω that both agents are aware of. Let E ⊆ Ω∧(ω) be an event. Agent
i’s posterior about E at ω′ ∈ Ω∧(ω) is given by equation (1).16 Event E∗ specifies that both

16This definition requires that the agent is aware of E at ω′. In the theorem below this condition is satisfied
for self evident events, so we do not need to specify the more complicated definition of a posterior.
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agents are aware of E and that i’s posterior is qi, while j’s posterior is qj:

E∗ =
{
ω′ ∈ Ω∧(ω) : qi(E)(ω′) = qi, qj(E)(ω′) = qj

}
.

The following theorem states that if E∗ is common knowledge, then qi = qj. There is an
added assumption which was discussed in the previous section where common knowledge
was characterized in terms of a self evident event.

Theorem 4. Suppose that E∗ is common knowledge at ω, so that it is commonly known that
i’s posterior is qi and j’s posterior is qj. If knowledge of E∗ is continuous at ω, then qi = qj.

Theorem 4 states that if the posteriors defined on the common state space are common
knowledge, they are identical. The following example shows that if an agent’s awareness
is bigger than the common one, then his actual posterior may be different and beyond the
other agent’s reasoning. Hence, agents can agree to disagree and trade.

Example

Recall the example in the introduction, depicted in the figure below.

Figure 2

There are two agents, Holmes and Watson. There are two state spaces, S ′ = {ω1, ω2, ω4}
and S = {ω5, ω6}.17 The union of S and S ′ is Σ. Watson is always unaware of the extra
dimension and his possibility correspondence is such that PW (ω) = {ω5, ω6}, for any state
ω ∈ Σ. Holmes’ possibility correspondence is as follows:

PH(ω1) = PH(ω2) = {ω1, ω2},

PH(ω4) = {ω4},
17State ω3 is impossible so we do not include it in S′.
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PH(ω5) = PH(ω6) = {ω5, ω6}.
At ω4, Holmes is aware of both dimensions and because he knows the theorem “no barking
implies no intruder” and he receives information about the dog not barking, he is able to
deduce that there is no intruder. However, Watson, being unaware of the dog, reasons that
Holmes’ possibility correspondence is PH(ω5) = PH(ω6) = {ω5, ω6}.

The common state space is S. Let µ be the common prior defined on S, such that
µ(ω5) = µ(ω6) = 1/2. Suppose that Holmes and Watson bet on whether there is an intruder,
that is, on the occurrence of event E = {ω6}. The posterior of Holmes about E at ω is
pH(ω), while Watson’s is pW (ω). Note that different state spaces give different descriptions
of posteriors.

As discussed in section 4.3, an event can be common knowledge only if it is expressed
in S.18 At ω4, event {ω5, ω6} is common knowledge, specifying that Holmes’ posterior is
pH(ω5) = pH(ω6), while Watson’s posterior is pW (ω5) = pW (ω6). In accordance with Theo-
rem 4, pH(ω5) = pH(ω6) = pW (ω5) = pW (ω6).

For Watson this is the end of the story, since he is unaware of the extra dimension of
the dog not barking. However, Holmes is more aware. At ω4, he knows that there is no
intruder and hence he is willing to bet. His posterior about E at ω4 is 1. Hence, although
the posteriors described in S are common knowledge and equal, Holmes’ “actual” posterior
is different.19

Discussion

Theorem 4 shows that whenever the posteriors defined on the common state space are
common knowledge, they are identical. Nevertheless, the example showed that if Holmes
is more aware, his true posterior may be different and beyond the other agent’s reasoning.
Hence, agents can agree to disagree and trade. Note that we could have easily specified that
also Watson was more aware in other dimensions that Holmes is unaware of. In that case,
his true posterior would also be beyond Holmes’ reasoning. But this was not necessary in
order to have trade.

Intuition for this result can be obtained if we interpret the equality of the posteriors as
the outcome of the following procedure, described in the context of the standard model of
knowledge by Geanakoplos and Polemarchakis (1982). Suppose that initially Holmes and
Watson have different posteriors about E, and in particular Holmes has a posterior above a
half and wants to buy, while Watson has a posterior below a half, and wants to sell. Suppose
that they meet and they announce their posteriors and their willingness to trade. Holmes
can then use Watson’s announcement in order to further refine what he knows, by taking
the intersection of his own information with the set of states that describe a posterior below
a half for Watson. Holmes can now announce a possibly different posterior which reflects
his new information, while Watson can use Holmes’ announcement to further refine his own

18Or a less complete state space, which does not exist in this example.
19Note that we have not specified Holmes’ prior on S′. The result is true for any prior that assigns positive

probability to ω4.
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information. Geanakoplos and Polemarchakis (1982) shows that the agents will eventually
agree on the posteriors.

A necessary condition for this result is that partitions are common knowledge, which is
true in the standard model. It is also true in this model but only for state spaces commonly
known that everyone is aware of. Therefore, the updating of the posteriors that was described
above can only refer to such a common state space. If Holmes is more aware, then announcing
his “true” posterior or his willingness to buy will be of no value to Watson, because he is
simply unaware of the states that would enable Holmes to make these announcements. As
a result, Watson cannot further refine his own knowledge. Updating of information due to
other agents’ actions or announcements still takes place in an environment with unawareness,
but it is constrained by what is commonly known that everyone is aware of. Hence, agents can
engage in trade when the differences in their posteriors stem from asymmetric information
acquired by theorems that others are unaware of.

Concluding, we need to emphasize that the purpose of the example is not to show that
there can be trade. This can easily be shown within the framework of the standard model,
by assuming that agents have different priors, or that they make mistakes - and unawareness
is a form of mistake. The purpose of the example is to isolate a particular type of mistake
(unawareness of theorems) and use it to provide an interesting or plausible story of why
(otherwise rational) agents might trade.

Heifetz et al. (2006) and Heifetz et al. (2007a) also provide alternative examples of spec-
ulative trade in an environment with unawareness. In their setting, an owner contemplates
selling his firm to a potential buyer. The “common” state space specifies that the value of
the firm can be either 100 or 80. The owner is aware of a possible lawsuit that could decrease
the firm’s value by 20, but not of a possible novelty that could increase its value by 20. The
potential buyer is aware of the novelty but not of the lawsuit. It is shown that “there is
common certainty of preference to trade, but each player strictly prefers to trade”.

Both the example in Heifetz et al. (2007a) and that in the present paper specify a “com-
mon” state space where agents are indifferent between trading or not, but are willing to trade
in their respective, more complete, state spaces.20 But the reason is different. In the example
of Heifetz et al. (2007a), differences in awareness imply differences in the perception of the
actual payoff, and wrong reasoning about the other agent’s perception of his payoff. For
instance, the owner wrongly deduces that the firm’s value can be 60, 80 or 100 and that the
buyer thinks that the value can be 80 or 100. In the example of the present paper, differences
in awareness imply differences in posteriors about events of the common state space, and
wrong inferences about the other agent’s perception of his posterior. For instance, Watson’s
posterior about the event “there is no intruder” is 1/2 and he wrongly deduces that Holmes’
posterior about the same event is also 1/2.

20In the example of this paper only one agent’s state space is more expressive than the common state
space. This can easily be extended to an example where this is true for both agents.
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A Appendix

Proof of Proposition 1.
First we prove that if S ¹ S ′, then (KS(E))S′ ⊆ KS′(E). Suppose ω ∈ (KS(E))S′ . Then,

ωS ∈ KS(E), which implies that E ¹ P (ωS) and P (ωS) ⊆ EΩ(ωS). Projections Preserve
Ignorance implies that E ¹ P (ωS) ¹ P (ω) and P (ω) ⊆ (P (ωS))Ω(ω) ⊆ EΩ(ω). Hence,
ω ∈ KS′(E). Finally, (KS(E))S′ ⊆ KS′(E) implies KS(E) ⊆ (KS′(E))S. Also, note that
KS(E) ⊆ AS(E). That the other direction is not necessarily true is shown by the main
example.

Proof of Theorem 1.

1. Subjective Necessitation Suppose ω ∈ S. Confinedness implies that P (ω) ⊆ S ′ for
some S ′ ¹ S. Since Ω(ω) = S ′ we have ω ∈ KS(Ω(ω)).

2. Generalized Monotonicity Suppose ω ∈ KS(E). Then, E ¹ P (ω) and P (ω) ⊆
EΩ(ω). Also, F ¹ P (ω) which implies S(E) ∨ S(F ) ¹ Ω(ω) and EΩ(ω) ⊆ FΩ(ω).
Therefore, ω ∈ KS(F ).

3. Conjunction We have that E ¹ P (ω) and F ¹ P (ω) if and only if S(E) ∨ S(F ) ¹
P (ω). Also, P (ω) ⊆ EΩ(ω) and P (ω) ⊆ FΩ(ω) if and only if P (ω) ⊆ EΩ(ω) ∩ FΩ(ω) =
(ES(E)∨S(F ) ∩ FS(E)∨S(F ))Ω(ω). The latter equality follows because ω1 ∈ (ES(E)∨S(F ) ∩
FS(E)∨S(F ))Ω(ω) ⇐⇒ {ω1}S(E)∨S(F ) ∈ ES(E)∨S(F ) ∩FS(E)∨S(F ) ⇐⇒ ω1 ∈ EΩ(ω) ∩FΩ(ω).

4. The Axiom of Knowledge ω ∈ KS(E) implies E ¹ P (ω) and P (ω) ⊆ EΩ(ω).
Generalized Reflexivity implies ωΩ(ω) ∈ P (ω). Hence, ωΩ(ω) ∈ EΩ(ω), which implies
ω ∈ ES.

5. The Axiom of Transparency Suppose ω ∈ KS(E). Then, E ¹ P (ω) and P (ω) ⊆
EΩ(ω). We have to show that P (ω) ⊆ KΩ(ω)(E), or that ω1 ∈ P (ω) implies E ¹ P (ω1)
and P (ω1) ⊆ EΩ(ω1). From Stationarity we have that ω1 ∈ P (ω) implies P (ω1) = P (ω)
and Ω(ω) = Ω(ω1). Hence, E ¹ P (ω1) and P (ω1) ⊆ EΩ(ω1). Suppose ω ∈ KSKΩ(ω)(E).
Then, P (ω) ⊆ KΩ(ω)(E). From Generalized Reflexivity we have ωΩ(ω) ∈ P (ω) and from
the proof of Proposition 1 we have (KΩ(ω)(E))S ⊆ KS(E). Therefore, ω ∈ KS(E).

6. The Axiom of Wisdom Suppose ω ∈ AS(E) ∩ ¬KS(E). Then, E ¹ P (ω) and
P (ω) * EΩ(ω). We need to show that P (ω) ⊆ AΩ(ω)(E) ∩ ¬KΩ(ω)(E). Suppose ω1 ∈
P (ω). Stationarity implies that P (ω1) = P (ω). Hence, E ¹ P (ω1) and P (ω1) * EΩ(ω1),
which imply that ω1 ∈ AΩ(ω)(E) ∩ ¬KΩ(ω)(E).

Suppose ω ∈ KS(AΩ(ω)(E)∩¬KΩ(ω)(E)). Then, P (ω) ⊆ AΩ(ω)(E)∩¬KΩ(ω)(E). Since
AΩ(ω)(E) is defined only if E ¹ Ω(ω), we have that ω ∈ AS(E). It remains to show that
ω ∈ ¬KS(E), or that P (ω) * EΩ(ω). We know that for all ω1 ∈ P (ω), ω1 ∈ ¬KΩ(ω)(E),
which implies that P (ω1) * EΩ(ω). Since P (ω) = P (ω1), we have that P (ω) * EΩ(ω).

22



8. Strong Plausibility Suppose ω ∈ US(E). By definition, we have E ¹ S and
E � P (ω) which imply S � P (ω). Hence, ω ∈ ¬KS(E) ∩ ¬KS(¬KS(E)) ∩ . . . ∩
¬KS(¬KS(. . .¬KS(E))).

9. AU Introspection Suppose ω ∈ US(E). By definition, we have E ¹ S and E � P (ω)
which imply S � P (ω) and ω ∈ US(US(E)).

10. KU Introspection Suppose ω ∈ KS(US(E)). Then, S ¹ P (ω) and from Confinedness
and ω ∈ S we have P (ω) ¹ S and P (ω) ⊆ US(E). Generalized Reflexivity implies that
ω ∈ US(E), which implies E � P (ω). But this contradicts that E ¹ S. The proof of
footnote 6 is identical.

11. Symmetry Follows since by definition E ¹ ¬E if and only if ¬E ¹ E.

12. AA-Self Reflection ω ∈ AS(E) implies E ¹ S and E ¹ P (ω). Therefore, AS(AΩ(ω)(E))
is well defined and Ω(ω) ¹ P (ω) implies ω ∈ AS(AΩ(ω)(E)). For the other direction,
suppose that ω ∈ AS(AΩ(ω)(E)). Since AΩ(ω)(E) is defined only if E ¹ Ω(ω), we have
that ω ∈ AS(E).

13. AK-Self Reflection The proof is similar.

14. A-Introspection ω ∈ AS(E) implies E ¹ S and E ¹ P (ω), so we just have to show
that P (ω) ⊆ AΩ(ω)(E). Suppose that ω1 ∈ P (ω). Stationarity implies P (ω) = P (ω1),
so we have E ¹ P (ω1) and ω1 ∈ AΩ(ω)(E). For the other direction, suppose that
ω ∈ KS(AΩ(ω)(E)). This implies that ω ∈ AS(AΩ(ω)(E)) and ω ∈ AS(E) follows from
AA-Self Reflection.

Lemma 3. Suppose E ¹ S. For any sequence i1, . . . , in, Ωi1...in(ωS) ¹ Ωi1...in(ω) and
(P in . . . P i1(ω))Ωi1...in (ωS) ⊆ P in . . . P i1(ωS).

Proof. For n = 1, PPI implies that (P i1(ω))↑ ⊆ (P i1(ωS))↑. Suppose ω′ ∈ P i1(ω). If
Ωi1(ωS) � Ωi1(ω) then ω′ /∈ (P i1(ωS))↑, a contradiction. Moreover, ω′ ∈ (P i1(ωS))↑ implies
ω′

Ωi1 (ωS)
∈ P i1(ωS).

Suppose the claim is true for n = k. Recall that,

Ωi1...ik+1(ω) =
∧

ω′∈P ik ...P i1 (ω)

Ωik+1(ω′),

P ik+1 . . . P i1(ω) =
⋃

ω′∈P ik ...P i1 (ω)

(P ik+1(ω′))Ωi1...ik+1(ω).

From the induction hypothesis we know that (P ik . . . P i1(ω))Ωi1...ik (ωS) ⊆ P ik . . . P i1(ωS).
Hence, for any ω′ ∈ P ik . . . P i1(ω) we have ω′

Ωi1...ik (ωS)
∈ P ik . . . P i1(ωS). From PPI, we have

that Ωik+1(ω′
Ωi1...ik (ωS)

) ¹ Ωik+1(ω′) and that (P ik+1(ω′))Ωi1...ik+1(ωS) ⊆ (P ik+1(ω′
Ωi1...ik (ωS)

))Ωi1...ik+1(ωS).

Hence, the result follows.
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Proof of Lemma 1. We first show that (CKS(E))S′ ⊆ CKS′(E). Suppose that ω ∈ (CKS(E))S′ .
Then, ωS ∈ CKS(E) which implies that for any sequence i1, . . . in we have E ¹ Ωi1...in(ωS)
and P in . . . P i1(ωS) ⊆ EΩi1...in(ωS). Applying Lemma 3 we have E ¹ Ωi1...in(ω) and P in . . . P i1(ω) ⊆
EΩi1...in(ω), which implies, from Proposition 3, that ω ∈ CKS′(E). Finally, (CKS(E))S′ ⊆
CKS′(E) implies CKS(E) ⊆ (CKS′(E))S. That the other direction is not necessarily true
is shown by the following example. There are two agents, equipped with possibility cor-
respondences identical to that of Holmes, of the original example. Then, {ω6} is common
knowledge at ω4, but not at ω6.

The proof of Proposition 2 is an immediate consequence of the following Proposition.

Proposition 3. For any sequence i1 . . . in, the following two statements are equivalent:

• E ¹ Ωi1...in(ω) and P in(. . . (P i2(P i1(ω)))) ⊆ EΩi1...in (ω),

• ω ∈ K i1
S (Ki2

Ωi1 (ω)
(. . . Kin

Ωi1...in−1(ω)
(E))).

Proof. Note that P in(. . . (P i2(P i1(ω)))) ⊆ Ωi1...in(ω) for all n ≥ 1 because Sin
P in−1(...(P i2(P i1 (ω))))

=

Ωi1...in(ω). This implies that Ωi1...in(ω) ¹ Ωi1...in−1(ω) for all n ≥ 2.
Suppose that E ¹ Ωi1...in(ω) and P in(. . . (P i2(P i1(ω)))) ⊆ EΩi1...in (ω). Then, E ¹

Ωi1...in−1(ω) and Ki1
S (K i2

Ωi1 (ω)
(. . . K in

Ωi1...in−1 (ω)
(E))) is well defined.

The rest of the proof is by induction:

• For n = 1 we have that ω ∈ K i1
S (E) if and only if E ¹ Ωi1(ω) and P i1(ω) ⊆ EΩi1 (ω).

• For n = k, suppose that E ¹ Ωi1...ik(ω) and P ik(. . . (P i1(ω))) ⊆ EΩi1...ik (ω) if and only

if ω ∈ Ki1
S (. . . K ik

Ωi1...ik−1 (ω)
(E)).

• For n = k + 1, we need to show that E ¹ Ωi1...ik+1(ω) and P ik+1(. . . (P i1(ω))) ⊆
EΩi1...ik+1 (ω) if and only if ω ∈ K i1

S (. . . K
ik+1

Ωi1...ik (ω)
(E)).

Suppose that E ¹ Ωi1...ik+1(ω) and P ik+1(. . . (P i1(ω))) ⊆ EΩi1...ik+1 (ω). This implies

that (P ik+1(ω′))Ωi1...ik+1 (ω) ⊆ EΩi1...ik+1 (ω), for all ω′ ∈ P ik(. . . (P i1(ω))). We want to show

that P ik(. . . (P i1(ω))) ⊆ K
ik+1

Ωi1...ik (ω)
(E) which from the induction hypothesis implies that

ω ∈ Ki1
S (. . . (K ik

Ωi1...ik−1(ω)
(K

ik+1

Ωi1...ik (ω)
(E)))). Suppose that ω′ ∈ P ik(. . . (P i1(ω))). Then,

(P ik+1(ω′))Ωi1...ik+1(ω) ⊆ EΩi1...ik+1(ω). Since E ¹ Ωi1...ik+1(ω) ¹ Ωik+1(ω′), we also have

P ik+1(ω′) ⊆ EΩik+1 (ω′). Together, they imply ω′ ∈ K
ik+1

Ωi1...ik (ω)
(E).

For the other direction, suppose that ω ∈ Ki1
S . . . K

ik+1

Ωi1...ik (ω)
(E). The induction hypothesis

implies that P ik(. . . (P i1(ω))) ⊆ K
ik+1

Ωi1...ik (ω)
(E). Hence, for all ω′ ∈ P ik(. . . (P i1(ω))) we have

E ¹ Ωik+1(ω′), P ik+1(ω′) ⊆ EΩik+1 (ω′) and (P ik+1(ω′))Ωi1...ik+1(ω) ⊆ EΩi1...ik+1 (ω). Therefore,

E ¹
∧

ω′∈P ik (...(P i1 (ω)))

Ωik+1(ω′) = Ωi1...ik+1(ω) and
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P ik+1(. . . (P i1(ω))) =
⋃

ω′∈P ik (...(P i1 (ω)))

(
P ik+1(ω′)

)
Ωi1...ik+1 (ω)

⊆ EΩi1...ik+1 (ω).

Proof of Lemma 2. Take any sequence i1, . . . in. By definition, Ω∧(ω) ¹ Ωi1...in(ω) and since
P in(. . . (P i1(ω))) ⊆ Ωi1...in(ω), we also have P in(. . . (P i1(ω))) ⊆ (

Ω∧(ω)
)
Ωi1...in (ω)

. Applying

Proposition 2 we have the result. For the second claim, suppose that E ∈ E is common
knowledge at ω. By Proposition 2, E ¹ Ωi1...in(ω) for any sequence i1, . . . in. Hence, E ¹
Ω∧(ω).

Proof of Theorem 2. First, we prove the following Lemma.

Lemma 4. Event E is common knowledge at ω.

Proof. Using Proposition 2, we just need to show that for any sequence i1 . . . in of agents,
E ¹ Ωi1...in(ω) and P in(. . . (P i1(ω))) ⊆ EΩi1...in (ω). The proof is by induction:

• For n = 1, since E is self evident for i1 and from the proof of Property 1 we have

ω ∈ ES ⊆
(
Ki1

S(E)(E)
)

S
⊆ Ki1

S (E). Hence, E ¹ Ωi1(ω) and P i1(ω) ⊆ EΩi1(ω).

• Suppose that for n = k, E ¹ Ωi1...ik(ω) and P ik(. . . (P i1(ω))) ⊆ EΩi1...ik (ω).

• For n = k + 1, we need to show that E ¹ Ωi1...ik+1(ω) and P ik+1(. . . (P i1(ω))) ⊆
EΩi1...ik+1 (ω). By definition,

P ik+1(. . . (P i1(ω))) =
⋃

ω′∈P ik (...(P i1 (ω)))

(
P ik+1(ω′)

)
Ωi1...ik+1 (ω)

.

From the induction hypothesis, for any ω′ ∈ P ik(. . . (P i1(ω))) we have

ω′ ∈ EΩi1...ik (ω) ⊆
(
K

ik+1

S(E)(E)
)

Ωi1...ik (ω)
⊆ K

ik+1

Ωi1...ik (ω)
(E).

Hence, E ¹ Ωik+1(ω′) and P ik+1(ω′) ⊆ EΩik+1 (ω′). Therefore, E ¹ Ωi1...ik+1(ω), and

P ik+1(. . . (P i1(ω))) ⊆ EΩi1...ik+1(ω).

Since E∗ ¹ E and ES ⊆ E∗
S, we have that E ⊆ E∗

S(E). Fix a sequence i1 . . . in of

agents. From Generalized Monotonicity and the fact that E∗ ¹ E ¹ Ωi1...in−1(ω) we have
Kin

Ωi1...in−1(ω)
(E) ⊆ Kin

Ωi1...in−1 (ω)
(E∗

S(E)) ⊆ K in
Ωi1...in−1 (ω)

(E∗). By applying Generalized Mono-

tonicity recursively we have that Ki1
S (. . . (K in

Ωi1...in−1 (ω)
(E))) ⊆ Ki1

S (. . . (K in
Ωi1...in−1 (ω)

(E∗))).

Therefore, ω ∈ K i1
S (. . . (Kin

Ωi1...in−1(ω)
(E∗))) and since this holds for all sequences i1, . . . , in,

E∗ is common knowledge at ω.
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Lemma 5. Fix a sequence ji, . . . , jl and let S = Ωj1...jl(ω). Then, for any sequence i1, . . . in,
Ωj1...jlii...in(ω) ¹ Ωii...in(ωS) and P in . . . P i1(ωS) ⊆ (P in . . . P i1P jl . . . P j1(ω))Ωii...in(ωS).

Proof. For n = 1, by Reflexivity we have that ωS ∈ P jl . . . P j1(ω). Hence, P i1(ωS) ⊆
(P i1P jl . . . P j1(ω))Ωi1 (ωS) and Ωj1...jli1(ω) ¹ Ωi1(ωS). Suppose that for n = k we have that

P ik . . . P i1(ωS) ⊆ (P ik . . . P i1P jl . . . P j1(ω))Ωi1...ik (ωS),

Ωj1...jli1...ik(ω) ¹ Ωi1...ik(ωS).

Recall that,

P ik+1 . . . P i1P jl . . . P j1(ω) =
⋃

ω′∈P ik ...P i1P jl ...P j1 (ω)

(P ik+1(ω′))Ωj1...jli1...ik+1 (ω),

P ik+1 . . . P i1(ωS) =
⋃

ω′∈P ik ...P i1 (ωS)

(P ik+1(ω′))Ωi1...ik+1(ωS).

Take ω′ ∈ P ik . . . P i1(ωS). From the induction hypothesis we have that ω′
Ωj1...jli1...ik (ω)

∈
P ik . . . P i1P jl . . . P j1(ω), which implies (from PPI) that Ωik+1(ω′

Ωj1...jli1...ik (ω)
) ¹ Ωik+1(ω′).

Since this holds for all such ω′, we have,

Ωj1...jli1...ik+1(ω) ¹ Ωi1...ik+1(ωS),

(P ik+1(ω′))Ωi1...ik+1 (ωS) ⊆ (P ik+1(ω′Ωj1...jli1...ik (ω)))Ωi1...ik+1 (ωS),

which implies,

P ik+1 . . . P i1(ωS) ⊆ (P ik . . . P i1P jl . . . P j1(ω))Ωi1...ik+1(ωS).

Lemma 6. PPK implies that knowledge of E is continuous at ω, for any E and any ω.

Proof. Let S = Ωj1...jl(ω). For n = 1, we will show that Ωi1(ωΩ∧(ω)) = Ω∧(ω), ωΩ∧(ω) ∈
Ki1

Ω∧(ω)(E) and P i1(ωΩ∧(ω)) ⊆ (P i1(ωS))Ω∧(ω). From Lemma 5 we have that E ¹ Ω∧(ω) ¹
Ωji...jli1(ω) ¹ Ωi1(ωS). We know that ωS ∈ K i1

S (E), which implies P i1(ωS) ⊆ EΩi1 (ωS).
PPK implies that P i1(ωΩ∧(ω)) = (P i1(ωS))Ω∧(ω) ⊆ EΩ∧(ω). But then, Ωi1(ωΩ∧(ω)) = Ω∧(ω)
and ωΩ∧(ω) ∈ K i1

Ω∧(ω)(E). For n = k, suppose that Ωi1...ik(ωΩ∧(ω)) = Ω∧(ω), ωΩ∧(ω) ∈
Ki1

Ω∧(ω) . . . K ik
Ω∧(ω)(E) and P ik . . . P i1(ωΩ∧(ω)) ⊆ (P ik . . . P i1(ωS))Ω∧(ω). Let ω′ ∈ P ik . . . P i1(ωΩ∧(ω)).

Then, there is ω′′ such that ω′′Ω∧(ω) = ω′ and ω′′ ∈ P ik . . . P i1(ωS). Because ωS ∈ K i1
S . . . K

ik+1

Ωi1...ik (ωS)
(E),

we have that (P ik+1(ω′′))Ωi1...ik+1 (ωS) ⊆ EΩi1...ik+1 (ωS). Because Ωik+1(ω′) ¹ Ωi1...ik+1(ωS) ¹
Ωik+1(ω′′), PPK implies P ik+1(ω′) ⊆ (P ik+1(ω′′))Ω∧(ω) ⊆ EΩ∧(ω) and Ωik+1(ω′) = Ω∧(ω).

Hence, Ωi1...ik+1(ωΩ∧(ω)) = Ω∧(ω), ωΩ∧(ω) ∈ Ki1
Ω∧(ω) . . . K

ik+1

Ω∧(ω)(E) and P ik+1 . . . P i1(ωΩ∧(ω)) ⊆
(P ik+1 . . . P i1(ωS))Ω∧(ω).
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Proof of Theorem 3. Suppose that knowledge of E∗ is continuous at ω. Since E∗ is common
knowledge at ω we have that for any sequence i1 . . . in, E∗ ¹ Ωi1...in(ω). Therefore, E∗ ¹
Ω∧(ω) and the following event is well defined:

E =
⋂

i1,...,in
n∈N

K i1
Ω∧(ω)K

i2
Ω∧(ω) . . . K in

Ω∧(ω)(E
∗).

Since Ω∧(ω) ¹ E, we have that E∗ ¹ E. It remains to show that ω ∈ ES ⊆ E∗
S and that

E is a public event.

• ω ∈ ES

Fix a sequence i1, . . . , in and a state space S ′ ∈ Sω, where S ′ = Ωj1...jk(ω). Since E∗ is
common knowledge at ω, we have that ω ∈ Kj1

S . . . Kjk

Ωj1...jk−1(ω)
Ki1

Ωj1...jk (ω)
. . . Kin

Ωj1...jkii...in−1 (ω)
(E∗).

From Lemma 5 and Proposition 3 we have that ωS′ ∈ Ki1
S′ . . . K

in
Ωi1...in (ωS′ )

(E∗). Since

this is true for any sequence i1, . . . , in and any S ′ ∈ Sω, and knowledge of E∗ is con-
tinuous at ω we have that ωΩ∧(ω) ∈ K i1

Ω∧(ω) . . . K in
Ω∧(ω)(E). Hence, we have ωΩ∧(ω) ∈ E,

which implies ω ∈ ES.

• ES ⊆ E∗
S

Take any sequence i1 . . . in. The Axiom of Knowledge implies that K in
Ω∧(ω)(E

∗) ⊆
E∗

Ω∧(ω). From Generalized Monotonicity and the Axiom of Knowledge we have that

K
in−1

Ω∧(ω)K
in
Ω∧(ω)(E

∗) ⊆ K
in−1

Ω∧(ω)(E
∗
Ω∧(ω)) ⊆ K

in−1

Ω∧(ω)(E
∗) ⊆ E∗

Ω∧(ω). Continuing recursively

we have that K i1
Ω∧(ω)K

i2
Ω∧(ω) . . . K in

Ω∧(ω)(E
∗) ⊆ E∗

Ω∧(ω). Since this holds for any sequence
i1 . . . in, we have that E ⊆ E∗

Ω∧(ω). Hence, ES ⊆ E∗
S.

• E is a public event.

By Conjunction,

K i
Ω∧(ω)(E) =

⋂
i1...in
n∈N

Ki
Ω∧(ω)K

i1
Ω∧(ω)K

i2
Ω∧(ω) . . . K in

Ω∧(ω)(E
∗) = E.

Suppose that E∗ is common knowledge at ω ∈ S and there exists a public event E ⊆ S ′

such that E∗ ¹ E ¹ S, ω ∈ ES ⊆ E∗
S. Generalized monotonicity implies that for any se-

quence i1, . . . , in we have ωS′ ∈ E ⊆ K i1
S′ . . . K

in
S′ (E). We want to show that K i1

S′ . . . K
in
S′ (E) ⊆

(K i1
Ω∧(ω) . . . K in

Ω∧(ω)(E))S′ .
21 For n = 1 this is true because of the property ALTK. Sup-

pose that for n = k we have Ki1
S′ . . . K

ik
S′(E) ⊆ (Ki1

Ω∧(ω) . . . K ik
Ω∧(ω)(E))S′ . Since K

ik+1

S′ (E) ⊆
(K

ik+1

Ω∧(ω)(E))S′ we also have,

Ki1
S′ . . . K

ik
S′K

ik+1

S′ (E) ⊆ (Ki1
Ω∧(ω) . . . Kik

Ω∧(ω)K
ik+1

S′ (E))S′ ⊆ (Ki1
Ω∧(ω) . . . K ik

Ω∧(ω)(K
ik+1

Ω∧(ω)(E))S′)S′ .

21Note that since E is common knowledge at ω, from Lemma 2 we have S′ ¹ Ω∧(ω).
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From the definition of knowledge, Kik
Ω∧(ω)((K

ik+1

Ω∧(ω)(E))S′) ⊆ Kik
Ω∧(ω)K

ik+1

Ω∧(ω)(E). Hence, we

have that K i1
S′ . . . K

ik+1

S′ (E) ⊆ (K i1
Ω∧(ω) . . . K

ik+1

Ω∧(ω)(E))S′ . This implies that for any sequence

i1, . . . , in, we have ωΩ∧(ω) ∈ (Ki1
Ω∧(ω) . . . K in

Ω∧(ω)(E))S′

Since ES ⊆ E∗
S and E∗ ¹ E we also have that for any sequence i1, . . . , in, K i1

Ω∧(ω) . . . K in
Ω∧(ω)(E) ⊆

Ki1
Ω∧(ω) . . . K in

Ω∧(ω)(E
∗). Hence, for any sequence i1, . . . , in we have ωΩ∧(ω) ∈ Ki1

Ω∧(ω) . . . K in
Ω∧(ω)(E

∗)
and knowledge of E∗ is continuous at ω.

Proof of Theorem 4. From Theorem 3, there exists a public event E ′ such that E∗ ¹ E ′ and
ω ∈ E ′

S ⊆ E∗
S. Its proof also shows that E ′ ⊆ Ω∧(ω), which implies that E ′ ⊆ E∗. We

need to show that E ′ =
⋃

ω∈E′
P i(ω). Generalized Reflexivity implies E ′ ⊆

⋃

ω∈E′
P i(ω). For

the opposite direction, since E ′ is a public event, ω ∈ E ′ implies P i(ω) ⊆ E ′. Therefore,

E ′ =
⋃

ω∈E′
P i(ω), and by symmetry E ′ =

⋃

ω∈E′
P j(ω).

The next step is to show that E ′ is partitioned by P i. First, since E ′ is public, for any
ω′ ∈ E ′, Ω∧(ω) ¹ Ωi(ω′) ¹ Ω∧(ω). Generalized Reflexivity and Stationarity imply that if
ω′, ω′′ ∈ E ′ then either P i(ω′) = P i(ω′′) or P i(ω′) ∩ P i(ω′′) = ∅. The rest of the proof is
identical to that of Aumann (1976).

Agent i’s posterior at ω′ ∈ E ′ is

qi(ω′) =
µ(P i(ω′) ∩ E)

µ(P i(ω′))
.

Since qi(ω′) = qi for all ω′ ∈ E ′ we can sum over the disjoint partition cells of E ′ and derive
µ(E ′)qi = µ(E ′ ∩ E). Similarly for agent j we have µ(E ′)qj = µ(E ′ ∩ E) and therefore
qi = qj.
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