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Introduction and Literature
• The first model of this type was introduced in Bollerslev, Engle and Woodridge

(1988) this algorithm utilizes the vech matrix operator and specifies the model
dynamics as a V-ARMA type process.

• From this foundation a myriad of potential dynamic models have been pro-
posed, from a very basic constant correlation model such as that proposes in
Bollerslev (1990),

• Factor models, Alexander (2001),
• Dynamic correlations Engle (2000), Engle and Sheppard (2002).
• Two commonly utilized specifications of the conditional covariance process are

the MARCH model of Engle and Kim (2002) and the BEKK model of Engle
and Kroner (1994).



Aims and Objectives
• In this article we provide some stylized evidence to suggest that modelling

the time evolution of the conditional covariance matrix for equity returns as a
matrix autoregressive process does no fully reflect the dynamics of the system.

• Furthermore the distribution of the largest eigenvalues of the instantaneous
covariance matrix suggest that a finite mixture type model would be more
appropriate. We then present a simple model of regime switching covariance,
which is tractable even for very high-variate systems.



Some Observable Empirical Evidence
• Consider the following simple model, where yt is a vector of returns from

the S&P 500 cross section, a simple univariate ARX(p) model for first stage
filtration is,

(0.0) yi.t = f (yi,t−1, yi,t−2, ..., yi,t−p) + g (xt, zt) + ui,t

• where ui,t ∈ ut and ut is an n length column vector of residuals and xt is the
market return at time t and zt an appropriate risk free rate and t ∈ [1, ..., τ ].

• The estimated residuals ût from each model are collected, forming the data
matrix U = [ut=1,ut=2, ...,ut=τ ]

T, the estimate of the unconditional covariance
matrix is therefore Σ̂ = 1

τU
TU.



Eigenvalues
From figure 1 we observe that there are substantial differences (of order of mag-

nitude >10) between the eigenvalues of the unconditional covariance matrix, indi-
cating that the matrix is non-sparse and that the structure is dominated by the
last few largest eigenvalues.
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Figure 1. A plot of the Eigenvalues of the sample covariance matrix, 1
τ UTU, from 423 firms out of the S&P 500, for daily data over 20 years.



Time Evolution of the Eigenvalues of the Instantaneous
Quadratic Covariation utu

T
t
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Figure 2. Evolution of the Eigenvalues of utuT
t , over 3000 days, original stock price data source: DataStreamTM.
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Figure 3. Evolution of the Log Eigenvalues of utuT
t , over 3000 days, original stock price data source: DataStreamTM.



• In figure 3 we plot the time evolution of the largest eigenvalue and the set of
the remaining ones of utut

T.
• Visual inspection suggests that the distribution of the largest eigenvalue does

not appear matrix normal, and it fluctuates between two states ’high’ and low’
although the frequency at which it resides in each state varies considerably
between the two.



Distribution of Eigenvalues
To supplement this preliminary evidence we proceed by comparing the sample

distribution of the largest eigenvalue to the a distribution generated via simulation.

(0.0) Û = E

(
Σ̂

1
2

)T

where,

E =
[
εT
t=1, ε

T
t=2, ..., ε

T
t=η

]T(0.1)
εt ∼ N (0, I)(0.2)

and we present them in figures 4 and 5.
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Figure 4. Empirical distribution of the largest eigenvalue, ϕmax, of utuT
t
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Figure 5. Simulated distribution of the largest eigenvalue of ûtûT
t , where ut ∼ N

(
0, Σ̂

)
. It is immediately apparent that for large covariance

matrices the distribution of the largest eigenvalue for draws from a zero entered multi-normal distribution are far more tightly distributed
than the distribution observed from 20 years of data from the S&P 500.



Inference
• Empirical evidence from filtered equity return data suggests that the multi-

variate distribution of the residuals from the first stage filtration rejects the
unconditional normality assumption.

• A possible solution is to model ut ∼ N (0,Σt), where Σt, is a matrix process
and that this process is conditioned on some information set It and as such,

(0.2) Σt = Ψ
(
It|t−1,t−2,...,t=1

)
• where Ψ is a matrix function operating over It, that yields the non-negative

definite matrix Σt. In general this is normally a matricized vector process,
alternative specifications treat the process as a full Matrix Autoregressive pro-
cess.



The Boundary Model
As an alternative to the matrix autoregressive approach we suggest a regime

switching model, whereby the dynamics are essentially driven by a single underlying
process, φt ∈ R, which manifests itself via a process ψt ∈ [0, 1], that in effect
bounces the system between two boundary states. Consider a simple multivariate
linear filtration model, with n-dependent variables and m-explanatory variables,
(0.2) yt

n×1
= ΠT

n×m
xt
m×1

+ ut
n×1

Where the disturbances ut, are drawn from,

ut = Σ
1
2
t εt(0.3)

εt ∼ N

(
0, I

n×n

)
(0.4)

Here, Σt is a matrix process and Σ
1
2
t , is the Cholesky or upper triangular factor-

ization, where Σt ∈ Cn×n and is defined as non-negative definite Hermitian, i.e.
symmetric with non-zero eigenvalues.



Modelling the Covariance States
One method of modelling the covariance states is to have a regime switching

vector, for example,

Σt = Ψt ·Σu +
(
eeT −Ψt

)
·Σd(0.5)

Ψt = ψtψ
T
t(0.6)

However this specification cannot guarantee that the resultant conditional covari-
ance matrix Σt, will be non-negative definite.

A very simple decomposition of Σt suggests a second moment model with two
boundary states, designated by the subscripts u and d,

(0.6) Σt = ψtΣu + (1− ψt)Σd

Where the boundary matrices Σu and Σd are both non-negative definite Hermitian
matrices and aTΣua > aTΣda, where a ∈ Rn.



Modelling The Conditional State of the System
• The scalar process ψt is some form of dynamic process constrained to the unit

field.
• Now consider a function ξ (φt;ω) with parameter set ω, where φt is some d

dimensional process such as φt ∈ Rd.
• To be a valid switching function, the following must hold,

ξ : Rd → [0, 1]

,
• For example if the dimension of the state, d = 1, the logistic specification is a

useful transition function,

(0.6) ξ (φt;α, β, δ) =
(
1 + exp

(
−α (φt + β)δ

))



Modelling φt

For this example we choose the following autoregressive quadratic form,

(0.6) φt =

p∑
i=1

λT
i

(
ut−iu

T
t−i

)
λi +

q∑
j=1

γT
j Σt−jγj

Where, λi and γi are parameters vectors. The model parameter vector θ is therefore
defined as follows,

Λ = [λ1, ..., λp](0.7)
Γ = [γ1, ..., γq](0.8)

θ =
[
α, β, δ, (vecΛ)T , (vecΓ)T

]T
(0.9)



Parameters
The parameters domains are as follows,

δ ∈ N+(0.10)
β ∈ R
α ∈ R
λi ∈ R(n×1)

+

γi ∈ R(n×1)
+

Σu ∈ Cn×n

Σd ∈ Cn×n

Where Cn×n is the set of all non-negative n × n definite hermitian matrices and
N+, is the set of positive natural integers.



Model Properties
• The model offers an extremely simple representation of dynamic covariation

and several attractive properties are immediately apparent.
• The first interesting aspect is that Σt, will always be non-negative hermitian

if the boundary matrices Σu and Σd are non-negative definite.
• The model can capture smooth adjustments between the boundary matrices
Σu and Σd, or as a straightforward switching model.

• The model has two main operational modes, first when α is very large, either
by parameterization or through a priori specification the model has the effect
of generating rapid switches between the boundary matrices.

• The alternative specification restricts the size of α and the conditional co-
variance is characterized by a continuum of matrices between Σu and Σd,
the speed of this adjustment is dependent on all the other parameters, θ =[
λT, γT, α, β, δ

]T.



Extensions to the Basic Model
The model is extensible to encompass correlation dynamics by separating the

volatility and correlation dynamics, utilizing the standard decomposition.

(0.4) Σt = Rt ◦Ht

The boundary covariance matrices maybe estimated in the same manner as previ-
ously, the volatility (driven by the diagonal elements) and the correlation (driven



by the off-diagonal elements), are then modelled separately, as follows, first decom-
pose the boundary matrices, using the standard notation,

(0.4)

Σu = Ru ◦Hu

Σu =

{ [
σ2
i,u

]
i=j

[σi,j,u]i 6=j

Ru =

{
[ρi,j,u]i=j = 1

[ρi,j,u]i 6=j =
σi,j,u
σi,uσj,u

Hu =

{
[hi,j,u]i=j = σ2

i,u

[hi,j,u]i 6=j = σi,uσj,u

Σd = Rd ◦Hd

Σd =

{ [
σ2
i,d

]
i=j

[σi,j,d]i 6=j

Rd =

{
[ρi,j,d]i=j = 1

[ρi,j,d]i 6=j =
σi,j,d
σi,dσj,d

Hd =

{
[hi,j,d]i=j = σ2

i,d

[hi,j,d]i 6=j = σi,dσj,d

then specify two separate dynamics, ψR,t and ψH,t, for the correlation and volatility
processes respectively. For simplicity if only the first order p = 1, q = 1 version is



specified we obtain,

ψR,t = ξ (φR,t |αR, βR, δR)(0.5)
ψH,t = ξ (φH,t |αH, βH, δH)(0.6)
φR,t = λT

Rεt−1ε
T
t−1λR + γT

RRt−1γR(0.7)
φH,t = λT

Rut−1u
T
t−1λR + γT

RHt−1γR(0.8)

where, εi,t ∈ εt is the normalized residual, i.e. εi,t = ui,tσ
−1
i,t . As in the previous

model there are two main model dynamics depending on the constraints placed
upon the parameter vector.



Estimating the BSM Specification
• Estimation of the model is carried out in two stages.
• The first stage involves identifying the existence and estimation of the bound-

ary matrices.
• Once the boundary matrices have been identified, the second stage seeks to

estimate the remaining parameter vector, θ.



Boundary Matrices.

• To establish the existence of the two boundary matrices we proceed as follows,
for a given filtration, which identifies two data subsets, X1 and X2 from a
sample data matrix X, we test the following hypothesis,

•

H0 : Σ1 = Σ2 ≡ Σ(0.9)
H1 : Σ1 6= Σ2(0.10)

•

(0.10) ϑ = max
a,b∈Rn


(
aTΣ̂1b

) (
aTΣ̂2b

)
((
τ−1
1 + τ−1

2

) (
aTΣ̂a

) (
bTΣ̂b

)
+

(
aTΣ̂b

)2
)1

2





Empirical Example of the Regime Switching Model
• The BSM model is demonstrated using the filtered residuals, see figure 7 from

100 shares randomly selected from the S&P 500 dataset optimally analyzed in
the model in .

• We then form the instantaneous variance covariance matrices per time period
and these are filtered using the maximum eigenvalue approach.

• The subset data-matrices are then collected and the Takemura and Kuriki
matrix equality test (MEQT) is then applied, to the sub sample covariance
matrices.

• A Savitzky-Golay Smoothing Filter is used, which allows smoothing without
general loss of resolution. A Variety of filter specificationsare presented in the
reverse order of the proximity to the smoothed central eigenvalue.



Table 1. Table of MEQT statistics from a variety of filtration specification. Using the empirical distribution of the largest eigenvalues, a
high-band filter is used to create two data matrices U1 and U2 for MEQT stage.

Filtration MEQT statistic Degrees of Freedom ν Threshold (95% )
High Band 1 283.5858 100 124.3421
High Band 2 238.3220 100 124.3421
High Band 3 97.3510 100 124.3421

Covariance Equality Tests
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Figure 6. Eigen Filtration
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Figure 7. Eigen Filtration Closeup



Table 2. Estimation Results from the estimation of θ, using the BSM model structure.

Model Specification Parameters Log - Likelihood LR - Ratio versus Mod1 χ2 (ν)
Mod1 q = 1,p = 1 203 −437827.9359 N/A
Mod2 q = 2,p = 1 303 −437798.3894 29.5465 124.3421
Mod3 q = 1,p = 2 303 −437650.2673 177.6686 124.3421
Mod4 q = 2,p = 2 403 −437648.9149 179.0210 233.9943

Table 3. Parameter vector θ, with standard errors.

Parameter θ̂ stdev
(
θ̂
)

α 24.8747 5.0001
β −0.7 0.154

Switching Parameters
System State



500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

System State, ψt, ( Daily) over the time period 29/11/1994 - 29/05/2006

t

ψt
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Dynamic Correlation Predictions
The BSM appears to capture the direction of the dynamics of the conditional

correlation between individual stocks and shows promising forecasting performance
as changes in the conditional correlation are anticipated as regime switches.
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Figure 9. The Dynamic correlations of 5 sample assets from the 100 chosen.



Concluding Remarks
• This paper has presented a new method of estimating evolution of the multi-

variate second moments for high-variate models.
• The model in its basic form is shown to result in a positive-definite covariance

matrix and is tractable in it’s estimation, for high-variate systems.
• The model is parsimonious in the use of parameters and unlike the matrix

autoregressive models, i.e. the MARCH and the BEKK, the number of pa-
rameters increases in linear proportion to the dimensionality of the system, as
opposed to a quadratic increase in parameters.

• The basic model is not only applicable to modelling the dynamic interdepen-
dencies in the equity market, but could also be used in evaluating forward
correlations in interest rates and the dynamic dependencies in factors relating
to credit markets.



Final Remarks
In conclusion this model appears to offer a solution to the middle ground between

the fully functional MV-ARCH models with their associated problems, regarding
parameters and topology of the objective function and the totally ad-hoc methods
such as the RiskMetricsTM smoother and the exponentially weighted correlation
model.


