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Abstract

We study a continuous-time agency model in which a principal invests in a firm run by a

manager and monitored by an intermediary. Both the manager and the intermediary are subject

to moral hazard. We analyze two different contracting settings that differ by the type of inter-

mediation. In delegated monitoring, the principal can provide the optimal level of incentives to

both the intermediary and the manager. In delegated contracting, the principal offers a contract

only to the intermediary, who in turn designs a contract for the manager. Optimal incentives

are qualitatively different across the two cases. Whereas a strong performance shifts incentives

from the manager to the intermediary under delegated monitoring, it increases incentives for

both agents under delegated contracting. Agency conflicts at the intermediary level lead to

an overprovision of managerial incentives under delegated monitoring and an underprovision of

managerial incentives under delegated contracting.
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1 Introduction

Monitoring is a key function of financial intermediaries. Hedge funds, private equity funds, and

banks all help to contain agency problems for firms by monitoring their managers’ activities. Boards

of directors play a similar role when they monitor managers on behalf of shareholders. While these

intermediaries and institutions may possess unique capacities to monitor, they are subject to agency

frictions of their own. Thus, delegated monitoring is a double agency problem. An investor (or

a principal) invests in a firm run by a manager (an agent) and is monitored by an intermediary

(another agent). The manager and the intermediary are both subject to moral hazard. The goal

of this paper is to study dynamic contracting when monitoring is delegated.

Depending on the role played by the intermediary,1 there are two distinct ways to address these

agency conflicts. First, we analyze the delegated contracting setting, in which the investor does

not directly contract with the manager but delegates this task to the intermediary. Therefore,

the investor provides a contract to the intermediary, who in turn contracts with the manager and

decides on his own monitoring activity. The contract between the investor and the intermediary

depends on observable firm performance but not on the contract between the intermediary and the

manager. Second, we analyze a case in which the principal contracts directly with the manager but

still has to delegate the monitoring task to the intermediary. As contracting is direct in this case, we

refer to it simply as delegated monitoring (note that delegated contracting also involves monitoring

that is delegated but is distinguished by delegated contracting). The main contribution of the

paper is its characterization of optimal long-term contracts and the dynamics of the incentives for

both intermediary and manager for the two contracting modes.

To study these problems, we formulate a continuous-time contracting model with intermedi-

ation. A manager controls firm output via costly but unobservable effort. An intermediary has

access to monitoring technology that reduces the potential for moral hazard on the firm level by

decreasing the cost of managerial effort. Because the intermediary’s monitoring activity is also

unobservable to the investor, another agency conflict between the investor and the intermediary

exists. We assume that the manager is risk averse (as in Holmstrom and Milgrom (1987)) and that

the intermediary has limited liability and is more impatient than the investor (as in DeMarzo and

Sannikov (2006)).

The optimal contracts with the intermediary and the manager share a similar structure in

1Throughout the paper we refer to institutions between investors and managers that provide monitoring as inter-
mediaries. This notion includes financial intermediaries, but also boards of directors.
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either contracting mode. Because the manager’s effort and the intermediary’s monitoring are

costly, it is necessary to provide incentives to both the manager and the intermediary through

sufficient exposure to firm performance. As a consequence, both agents are punished (rewarded)

if output turns out worse (better) than expected. However, in our model, tying compensation

to firm performance is costly for the following reasons. First, the risk-averse manager demands

additional compensation for the exposure to output shocks. Second, because the intermediary

will not accept negative transfers from the investor, penalties may accumulate and lead to an

inefficient termination of the contract. To lower the likelihood of liquidation, it becomes optimal

to defer payments to the intermediary, which is again costly because the intermediary is more

impatient than the principal. The incentive schemes to the manager and the intermediary interact,

but differently depending on the contracting mode. In delegated contracting, the intermediary’s

performance pay incentivizes both monitoring of and contracting with the manager. Thus, optimal

incentives to the intermediary need to account for the fact that they are passed on incentives that

the intermediary offers the manager. In delegated monitoring, the manager’s performance pay

(in this case, set by the investor separately from the intermediary’s performance pay) determines

managerial effort, which, in turn, affects the intermediary’s optimal incentives to monitor.

Methodologically, the model of delegated contracting needs to deal with profitable transfers

between the manager and the intermediary beyond those needed to provide incentives. These

arise in our model due to the intermediary’s limited liability and relative impatience. Because the

intermediary cannot commit to payments after his own contract is terminated, the manager must

be able to save (and borrow) at the market interest rate to smooth his consumption and obtain

his promised contract value. However, because of his impatience, the intermediary has incentives

to make the manager raise debt on his behalf while pledging his stake in the firm as collateral.

To limit these deals and preclude degenerate solutions, we introduce an exogenous firm liquidation

risk that arrives according to a Poisson process.

We now briefly discuss our main findings and implications. First, our model generates sharp

predictions about the relation between incentives and firm performance. We find that the inter-

mediary should always receive more incentives after strong past performance, irrespective of the

contracting mode. The intermediary’s incentives need to be curbed after bad firm performance as

a way to limit the threat of inefficient contract termination. By contrast, the sign of the manager’s

incentives’ sensitivity to firm performance differs across the two contracting modes. After strong

firm performance under delegated contracting, the intermediary will receive stronger incentives and
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implement greater managerial effort. Hence, the intermediary passes additional incentives on to

the manager and the manager’s incentives increase with firm performance. Under delegated mon-

itoring, both the intermediary’s incentives and the manage”s incentives exhibit some features of

substitutes, in that managerial effort relaxes the intermediary’s incentive compatibility constraint.

Therefore, the principal finds it optimal to provide high powered incentives to the manager to indi-

rectly incentivize the intermediary. This effect is particularly strong when direct incentives to the

intermediary are particularly costly – that is, after poor firm performance and when the likelihood

of contract termination is high. After strong performance, direct incentives to the intermediary can

substitute indirect incentives such that the manager’s incentives decrease.

Second, we analyze how the magnitude of incentives provided to the manager and intermedi-

ary changes when contracting is delegated to the intermediary. We also compare the magnitude

of incentives to the second-best benchmark in which monitoring is not subject to moral hazard.2

Because under delegated contracting incentives cannot be provided directly and need to be passed

through the intermediary, the manager’s incentives and effort are below the second-best levels.

By contrast, because under delegated monitoring, the manager’s incentives can substitute for the

intermediary’s incentives, the manager’s incentives and effort are above the second-best level. Con-

sequently, the manager receives more incentives under delegated monitoring than under delegated

contracting while exactly the opposite is true for the intermediary, who receives more incentives

under delegated monitoring.

Third, we analyze when and why the principal should delegate contracting. Our model predicts

that intermediation under delegated contracting is particularly valuable for the principal when

agency conflicts are severe. This is the case regardless of whether agency conflicts are measured at

the firm or intermediary level. It is perhaps most surprising that it is favorable to rely heavily on the

intermediary and delegate contracting when the intermediary is plunged by agency conflicts: under

delegated contracting, the intermediary optimally has a large stake in the firm and is less affected

by increasing moral hazard when compared with the intermediary under delegated monitoring.

We discuss several implications of the above results. A notable implication of the second finding

is that investment via an intermediary can result in an over-provision of managerial incentives. To

provide more empirical content to our predictions, we interpret private equity investment as an

2In the second-best case, the principal can monitor the manager directly without the intermediary or, equivalently,
there are no agency frictions at the intermediary’s level. In the first-best case, there are no agency frictions at either
level.
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example of intermediation under delegated monitoring.3 Empirical evidence shows that private

equity investment increases managerial incentives in target firms (see, e.g., Leslie and Oyer (2008),

Acharya et al. (2012), and Cronqvist and Fahlenbrach (2013)). The common interpretation of

this empirical pattern is that private equity is a superior owner that can improve firm governance.

Our model suggests a very different interpretation: increased managerial incentives after private

equity investment are an optimal way to deal with moral hazard in monitoring by an intermediary.

Conversely, the common interpretation implies that incentives prior to private equity investment

are suboptimal, while this is not the case in our model’s interpretation.

The model also has implications for the effects of say-on-pay regulations, such as those intro-

duced in the U.S. in the 2010 Dodd-Frank Act. These regulations increase shareholders’ partici-

pation in determining executive compensation. Thus say-on-pay rules affect the role of boards of

directors and, in terms of our model, shift corporate governance from the delegated contracting

setting to the delegated monitoring setting. In accordance with the model’s predictions discussed

above, our theory then suggests that adopting say-on-pay rules will result in increased performance

pay and increased sensitivity of pay to poor realizations of performance. Both effects are consistent

with empirical evidence (Correa and Lel (2016), Iliev and Vitanova (2018), Ferri and Maber (2013),

Alissa (2015)). The proponents and opponents of say-on-pay regulations expected effects, either

due to managerial entrenchment or to shareholders’ low sophistication (see, e.g., Bebchuk et al.

(2007) and Kaplan (2007)). Our explanation is more innocuous and simply relies on changing the

contracting environment.

Our theory focuses on the monitoring function of financial intermediaries and complements

previous agency-based models of intermediation that consider other functions. Bhattacharya and

Pfleiderer (1985) study delegated portfolio management within a one-period model with hidden

information, while Ou-Yang (2003) studies portfolio management in a continuous-time model with

moral hazard. He and Krishnamurthy (2011, 2013) analyze financial intermediaries that facilitate

access to risky assets in general equilibrium models with asset pricing implications.

The fact that the monitoring function of financial intermediaries is limited by their own moral

hazard has been studied in the banking literature, starting with Diamond (1984). More closely

related to our paper is Holmstrom and Tirole (1997), who consider monitoring by financial inter-

3In the private equity investment model, Limited Partners (LPs) act as investors/principals and General Partners
(GPs) as intermediaries. The investment horizon, target firm profiles, and governance changes in target firms that
GPs implement are largely pre-specified in the contracts between LPs and GPs. Thus private equity investment
seems best described by our delegated monitoring model rather than the delegated contracting model.
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mediaries in an agency model. Their focus is on intermediaries’ financial constraints and their effect

on the provision of loans and on equilibrium interest rates. In contrast to these banking theories,

our model is set in an infinite-horizon setting and its objective is to examine the provision and

dynamics of incentives for both the intermediary and the manager.

Our paper is part of the growing literature on dynamic contracting models. In our model, the

impatience and limited liability of the intermediary lead to the same agency-induced inefficiencies

as in, among others, DeMarzo and Sannikov (2006), Biais et al. (2007), Sannikov (2008), Biais et al.

(2010), DeMarzo et al. (2012), Zhu (2012), and DeMarzo and Sannikov (2016). Furthermore, we

render additional tractability to our solution by assuming CARA utility for the manager, building

on the dynamic agency models of Holmstrom and Milgrom (1987), He (2011), He et al. (2017), and

Gryglewicz and Hartman-Glaser (2017).

Thus far, few models featuring multi-layered moral hazard have been developed, none of which

have incorporated dynamic settings. Using a static model with multiple agency conflicts, Scharfstein

and Stein (2000) analyze moral hazard that can arise between shareholders, CEOs, and division

managers. Holmstrom and Tirole (1997) also features a two-layered moral hazard problem. These

models and ours are distinct from two-sided agency problems, which feature two players and the

principal is subject to moral hazard, as in the static model of Bhattacharyya and Lafontaine (1995)

or in the dynamic model of Hori and Osano (2013). Our theory also relates to papers considering

optimal monitoring in two-player agency models in both dynamic (see, e.g., Dilmé et al. (2015),

Piskorski and Westerfield (2016), Halac and Prat (2016), Varas et al. (2017), and Malenko (2018))

and static settings (see, e.g., Lazear (2006) and Eeckhout et al. (2010)). Because the investor has to

incentivize both monitoring and effort, our model is also related to models of dynamic agency and

multitasking (Szydlowski (2016), Hoffmann and Pfeil (2017), Gryglewicz et al. (2018), Marinovic

and Varas (2018)).

The paper is organized as follows. Section 1 explains the model and the resulting contracting

problems. Sections 2 and 3 provide the solutions under delegated contracting and monitoring,

respectively. Section 4 analyzes the model implications and derives empirical predictions. Section

5 concludes. All technical details are deferred to the appendix.
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2 Model Setup

In this section, we formulate a continuous-time principal-agent problem in which an investor (prin-

cipal) commits funds to a firm through an intermediary. A manager is hired to operate the firm

and the intermediary possesses unique skills to monitor the management’s activities. The firm’s

cumulative output Xt until liquidation evolves according to

dXt = aMt dt+ σdZt,

where {Z} is a standard Brownian motion on the complete probability space (Ω,F ,P), aMt ∈ [0,∞)

is a time-varying drift, and σ > 0 is a constant volatility. In addition to the Brownian shocks, the

firm is exposed to an exogenous failure risk governed by a Poisson point process {N} with a constant

intensity Λ > 0 and with N0 = 0. Upon its arrival at time t (i.e., dNt = 1), the firm is no longer

able to produce cash flow at all future times s ≥ t and is liquidated. Formally, instantaneous output

is given by dXt = (aMt dt+ σdZt)1{Nt=0}. Output Xt is observable, in that the public information

filtration is given by F = {Ft : t ≥ 0}, where Ft = σ(Xs, Ns : 0 ≤ s ≤ t).

The manager controls the output process via unobservable effort aMt at instantaneous monetary

cost g(aMt |bIt ). The cost of managerial effort depends on the intermediary’s monitoring intensity

bIt ∈ {bL, bH}, which is observable to the manager but not to the investor. As in Holmstrom and

Tirole (1997), monitoring decreases the cost of managerial effort and generates private costs h(bIt )

to the intermediary. We need to assume that ga(a|b) > 0, gaa(a|b) > 0, gb(a|b) ≤ 0 and h′(b) > 0.

The strict convexity of g in a guarantees that optimal effort a is bounded. In the following, we

work with the functional forms g(a|b) ≡ 1
2
δa2

b and h(b) ≡ λ(b− bL).

The investor and the intermediary are risk-neutral and maximize their expected (discounted)

payoff in contrast to the manager, who is risk averse with CARA preferences and maximizes ex-

pected (discounted) utility. The manager’s flow utility is given by

u(ĉMt , a
M
t ) = −1

θ
exp

[
−θ
(
ĉMt − g(aMt |bIt )

)]
,

where ĉMt denotes the manager’s consumption flow. The manager and the intermediary possess

outside options v0 and ω0, measured respectively in their utility units. In case of liquidation, the

principal is able to recover a weakly positive value R ≥ 0. The intermediary has sufficiently deep

pockets but is protected by limited liability and cannot commit to any unfavorable payments or to
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contracts that deliver him a payoff below his outside option at any time with a non-zero probability.

We also assume that the intermediary cannot be paid negative wages by the principal. In contrast,

the principal is able to commit to any long-term contract. Whereas the investor and the manager

discount at the market interest rate r, the intermediary is more impatient and applies a discount

rate γ > r. Finally, we assume that, once employed, the manager can privately save and borrow at

the interest rate r, such that his consumption ĉMt is not observable. We also set usual regularity

conditions to ensure that the problem is solvable and well behaved; these technical conditions are

gathered in Appendix A.1.

To close this section, we emphasize that the unobservable Brownian shocks to the output process

generate moral hazard, while the observable Poisson liquidation shock does not. As will become

clear later, the liquidation risk is required to prevent solutions in which the intermediary can utilize

the manager’s savings account to raise riskless debt at the fair market price r, while pledging his

entire stake in the firm as collateral. In this case, the intermediary would effectively be able to alter

the timing of his compensation and remove the impatience friction from the model. This would

generate a solution in which the firm is run forever and payouts to the intermediary are indefinitely

delayed. In a similar spirit, DeMarzo and Sannikov (2006) assume that the agent cannot borrow

at the market interest rate so as to preclude degenerate solutions of the same type.

2.1 First and Second-Best

As a benchmark, we analyze the solutions under first-best (FB) and second-best (SB) cases. Under

FB, both monitoring and managerial effort are observable (e.g., it is equivalent to assuming σ = 0).

In SB, monitoring is observable by the principal, whereas managerial effort is not. Alternatively,

one could interpret SB as a contracting game between the manager and principal in which only the

principal possesses the monitoring technology. In the following, we will refer to third-best as the

case in which both the intermediary and the manager are subject to moral hazard. In all scenarios,

we assume that it is always optimal to implement full monitoring, b = bH , and provide conditions

for this to be the case in the appendix.

Evidently, the time-invariant first-best allocation is achieved by maximizing a − g(a|b) − h(b)

over a ≥ 0 and b ∈ {bL, bH}, assuming that full monitoring bFB equals bH , and therefore the

optimal effort is aFB = bH
δ .

The second-best solution is an easy extension of the seminal model of Holmstrom and Milgrom

(1987). The optimal contract is linear and therefore implements constant effort and monitoring
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over time. We gather the results in the following proposition.

Proposition 1. The following holds:

a) Under the first-best solution, the principal’s value is given by FFB = fFB − 1
θr ln(−θrv0).

The constant fFB is given by

fFB = max
a≥0

1

r + Λ
(a− g(a|bH)− h(bH) + ΛR) .

The optimal effort level is aFB = bH
δ .

b) Under the second-best solution, the principal’s value is given by FSB = fSB − 1
θr ln(−θrv0).

The constant fSB is given by

fSB = max
a≥0

1

r + Λ

[
a− 1

2

δa2

bH
− h(bH)− 1

2
θr

(
δa

bH
σ

)2

+ ΛR

]
.

The optimal effort level is aSB = ā with ā =
b2H

δbH+θrδ2σ2 .

In the next section, we discuss the contracting problems in the third-best case.

2.2 Delegated Monitoring vs. Delegated Contracting

In this paper, we analyze two different variants of the contracting game. First, we discuss the

case in which the investor cannot offer a contract to the manager directly, but only through the

intermediary. In this case, the principal contracts solely with the intermediary, who in turn offers

a contract to the manager. Hence, the intermediary provides a contract ΠM
DC to the manager

and the principal a contract ΠI
DC to the intermediary. The contract ΠM

DC specifies recommended

savings {SM} and effort {aI}, the cash-payments {cM} to the manager, and a termination time τM .

Similarly, ΠI
DC contains the intermediary’s compensation {cI} 4, a monitoring recommendation {b}

for the intermediary, and the termination time τ I . Formally, we write

ΠM
DC = ({cM}, {aI}, {SM}, τM ) and ΠI

DC =
(
{cI}, {bP }, τ I

)
,

4Because the intermediary cannot be paid negative wages, the process {cI} is (in both settings) almost surely
non-decreasing, in that dcIt ≥ 0 for all t ≥ 0 with a probability of one.
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where all elements of ΠM
DC and ΠI

DC are F-progressive. We say that a contract is terminated,

whenever future transfers equal zero, in that τK = inf{t ≥ 0 : dcKs = 0 for all s ≥ t} for K = I,M .5

Because the principal not only has to provide incentives to the intermediary to monitor, but also

to select the right menu ΠM
DC for the manager, we call this setting delegated contracting (DC).

Second, we consider that the investor is able to contract directly with both agents, the manager

and the intermediary. That is, the investor offers a contract ΠM
DM at t = 0 to the manager and ΠI

DM

to the intermediary. A contract ΠM
DM (ΠI

DM ) specifies the recommended effort (monitoring) process

{aP } ({bP }), cash transfers to the manager (intermediary) {cM} ({cI}), and the termination time

of the contract τM (τ I). Further, the contract ΠM
DM includes the recommended savings balance

{SM}. More formally,

ΠM
DM = ({cM}, {aP }, {SM}, τM ) and ΠI

DM =
(
{cI}, {bP }, τ I

)
.

All elements of ΠM
DM and ΠI

DM are F-progressive. Throughout the paper, we call this setting

delegated monitoring (DM). (We could also interpret this situation as direct instead of delegated

contracting or investment.) In both settings, we normalize the initial outlay and the intermediary’s

outside option to zero.

In summary, we use the following convention regarding effort and monitoring levels. Managerial

effort levels aP and aI are suggested by the contracts that the principal and the intermediary offer,

respectively. The manager’s actual effort is aM . Monitoring level bP is recommended in a contract,

whereas bI is the actual choice. In the following, we will work with three probability measures PP ,

PI , PM . As we show in the appendix, each effort path induces a probability measure and we let PK

be induced by {aK} for K ∈ {P, I,M}. Then, EKt [·] denotes the conditional expectation at time t

taken under the probability measure PK . We also write EK [·] to denote EK0 [·].

3 Solution – Delegated Contracting

3.1 Contracting Problem

The intermediary offers the contract ΠM
DC to the manager, which specifies recommended effort and

savings levels {aI}, {SM} in addition to the payments from the intermediary {cM}. Hence, the

5The termination times are redundant and implicitly contained in the payment processes {cK}. We include them
nonetheless for the ease of exposition.
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manager’s problem reads

V0−(ΠM
DC) ≡ max

{aM},{ĉM}
EM

[∫ ∞
0

e−rtu(ĉMt , a
M
t )dt

]
(1)

s.t. dŜMt = rŜMt dt− ĉMt dt+ dcMt with ŜM0 = SM0 . (2)

We call ΠM
DC incentive-compatible if (aMt , Ŝ

M
t ) = (aIt , S

M
t ) for all t ≥ 0, and credible if the in-

termediary can commit to it. Let the set of incentive-compatible and credible contracts for the

manager be ICMDC . Throughout the remainder of the paper, we focus without loss of generality on

incentive-compatible and credible contracts and impose standard regularity conditions, gathered in

the Appendix A.1, to ensure that the contracting game is well-behaved.

Because the intermediary faces a contract ΠI
DC = ({cI}, {bP }, τ I), but chooses {bI} and ΠM

DC ,

his problem reads

W0−(ΠI
DC ,Π

M
DC) ≡ max

{bI},ΠM∈ICMDC
EI
[∫ τI

0
e−γt

(
dcIt − h(bIt )dt

)
−
∫ τM

0
e−γtdcMt

]
(3)

s.t. V0(ΠM ) ≥ v0 and Wt(Π
I
DC ,Π

M ) = Wt ≥ 0 for all t ≥ 0 (4)

with Wt ≡ EIt

[∫ τI

t
e−γ(s−t) (dcIs − h(bIs)ds

)
−
∫ τM

t
e−γ(s−t)dcMs

]
. (5)

Importantly, the constraint Wt = Wt(Π
I
DC ,Π

M
DC) ≥ 0 arises due to the intermediary’s limited

commitment, in that at each point in time the intermediary’s continuation payoff must be at least

zero with certainty. If not, the intermediary could not credibly commit to the contract ΠM
DC ,

because he would be better off leaving the contractual relationship at any time t where Wt < 0.

Put differently, ΠM
DC is credible (given ΠI

DC), if and only if Wt(Π
I
DC ,Π

M
DC) ≥ 0 for all t ≥ 0.

In our model, a Poisson shock liquidates the firm and therefore also the intermediary’s contract,

in that τ I ≤ min{t ≥ 0 : dNt = 1}.6 As a consequence, payments {cM} must be F-predictable

rather than only adapted. This arises because the intermediary cannot fully commit to payments

and rationally leaves behind all liabilities to the manager after his contract is terminated at time

τ I . In other words, this optimally sets dcMs = 0 for all s ≥ τ I , which also implies the end time

τ ≡ τ I = τM of the manager’s contract ΠM
DC .7 Therefore, all transfers dcMt within a credible

6Indeed, we verify in the appendix that terminating the contract ΠI
DC is optimal for the principal when the output

process stops.
7In principle, a contract ΠM

DC could specify payments from the manager to the intermediary after termination.
Such contracts are not optimal, as we show in the Appendix.
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Figure 1: Heuristic timing.

contract ΠM
DC have to be made before time τ and, in particular, “just before” a Poisson shock may

occur.

Finally, the principal contracts only with the intermediary and offers the intermediary a contract

ΠI
DC , specifying recommended monitoring {bP } and wage {cI}. We call ΠI

DC incentive-compatible

if bPt = bIt for all t and denote the set of incentive-compatible contracts for the intermediary by

ICIDC .8 Hence, the principal’s problem reads

F0−(ΠI
DC) ≡ max

ΠI
EP
[∫ ∞

0
e−rtdXt −

∫ τI

0
e−rtdcIt

]
(6)

s.t. ΠI ∈ ICIDC and dcIt ,Wt(Π
I ,ΠM

DC) ≥ 0 for all t ≥ 0. (7)

Solving her maximization problem, the principal has to respect the intermediary’s limited liability

constraint Wt ≥ 0, incentive compatibility and can only pay non-negative wages dcIt ≥ 0.

To complete the description of the contracting problem, we give a heuristic overview of the

events happening during one instant [t, t+ dt] (also presented in Figure 1):

i) Manager and intermediary choose respectively aMt and bIt .

ii) Cash flow dXt is realized.

iii) The manager receives payments dcMt from the intermediary and decides on consumption.

iv) With probability Λdt, the firm is liquidated and all contracts are ended, in which case dNt = 1;

otherwise dNt = 0.

v) The intermediary collects payments dcIt .

8Due to full commitment, all contracts that the principal offers are credible.
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3.2 The Manager’s Problem

Taking contract ΠM
DC = ({aI}, {SM}, {cM}, τM ) ∈ ICMDC , and monitoring {bI} as given, we are

able to define the manager’s continuation utility as follows:

Vt ≡ Et
[∫ ∞

t
e−r(s−t)u(ĉMs , a

M
s )ds

]
. (8)

Because the manager’s compensation {cM} has to be predictable with respect to F, it is convenient

to work with the left-limit of his continuation payoff, Vt, which we denote by Vt− ≡ lims↑t Vs.

Intuitively, while Vt represents the agent’s payoff after observing whether a Poisson shock has

occurred, Vt− is the respective value before this uncertainty is resolved.

Using standard techniques, we can represent {V } by means of a stochastic differential equation.

Lemma 1. Let ΠM
DC ∈ ICMDC . Then, there exist F-predictable processes {αM} and {βM}, such

that {V }, as defined in (8), solves the stochastic differential equation

dVt = rVt−dt− u(ĉMt , a
I
t )dt+ (−θrVt−)βMt

(
dXt − aIt dt

)
− (−θrVt−)αMt

(
dNt − Λdt

)
. (9)

Incentive compatibility, SMt = ŜMt , requires rVt− = u(ĉMt , a
I
t ), and incentive compatibility, aMt = aIt ,

requires βMt =
δaIt
bIt

.

The rationale behind the two incentive-compatibility conditions is the following. First, to ensure

that the manager does not have incentives for additional saving or borrowing (i.e., SMt = ŜMt ), the

contract ΠM
DC has to respect the manager’s Euler equation for consumption. This implies that the

marginal utility of consumption is a martingale. Because for CARA preferences marginal utility is

proportional to flow utility (i.e., there are no wealth effects), it follows that the continuation utility

{V } is also a martingale, in that rVt− = u(ĉMt , a
M
t ).

Second, the sensitivity {βM} makes payments contingent on firm performance and thus ensures

that the agent possesses sufficient incentives to exert the appropriate amount of effort. At each time

t, the manager maximizes the sum of his flow utility and the expected change in his continuation

utility, in that he solves

max
aMt ≥0

u(ĉMt , a
M
t )dt+ EMt [dVt] = max

aMt ≥0
u(ĉMt , a

M
t )dt+ (−θrVt−)βMt (aMt − aIt )dt.

It follows that the incentive compatibility condition is βMt =
δaIt
bIt

for interior aIt . In this context,
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it also becomes clear why it is convenient to scale βMt by (−θrVt−). The incentive-compatibility

condition for savings rVt− = u(ĉMt , a
M
t ) implies that (−θrVt−) equals the manager’s marginal utility;

therefore, βMt directly measures the monetary compensation sensitivity.

Notably, from rVt− = u(ĉMt , a
M
t ), we obtain the manager’s consumption level implied by an

incentive-compatible contract:

ĉt
M = − ln(−θrVt−)

θ
+ g(aMt |bIt )⇐⇒ ĉt

M − g(aMt |bIt ) = − ln(−θrVt−)

θ
≡ rCE(Vt−). (10)

In the following, we will refer to CEt− ≡
ln(−θrVt− )

θr as the manager’s certainty equivalent. Note

that at any time t the manager is indifferent to the options of further following a contract with

promised value Vt or of receiving an infinite, constant consumption flow rCEt− .

By Itô’s Lemma, the certainty equivalent solves

dCEt =
1

2
θr(βMt σ)2dt+ ΛαMt dt+ βMt (dXt − aIt dt)−

ln(1 + θrαMt )

θr
dNt. (11)

Note that the certainty equivalent must grow on average to compensate the manager for the two

sources of risk that he is exposed to. In the drift term of (11), 1
2θr(β

M
t σ)2 captures the compensation

for exposure to the Brownian risk in output and ΛαMt for the exposure to liquidation risk.

Under a credible contract ΠM
DC , the manager’s savings must be such that SM

τI
= CE(VτI ).

9 Oth-

erwise, the contract ΠM
DC would not guarantee the agent his promised value VτI at the termination

time of the intermediary’s contract τ I . This dilemma arises because the intermediary cannot com-

mit to payments after termination and would optimally not make any. Therefore, the manager has

to derive all of his future consumption {ĉMt }t≥τI from the savings pool SM
τI

and the subsequently

earned interest rate. Thus, if a Poisson shock at time t leads to termination, αMt is such that CEt

and SMt are equalized.

To better understand this scenario, imagine that just before time t (i.e., at t−), the manager’s

savings fall short of the certainty equivalent, in that Dt− ≡ CEt− − SMt− > 0, and the intermediary

still “owes” the manager the amount Dt− . In case a Poisson shock occurs at time t, the contracts

ΠM
DC and ΠI

DC both end at t; therefore, the manager no longer receives cash payments. In particular,

the manager is not fully paid the promised amount CEt− , and has a a deficit equal to Dt− . As

a consequence, his certainty equivalent (or continuation value) is strictly lower after the Poisson

9In fact, both contracts end at the same time, i.e. τM = τ I .
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shock while the savings do not change, such that

CEt− −Dt− = SMt− = SMt = CEt =⇒ CEt − CEt− = Dt− > 0.

From there, it follows by means of (11) that Dt− = ln(1 + θrαMt )/(θr)dNt or equivalently

αMt = α(Dt−) ≡ 1

θr
(exp(θrDt−)− 1) > 0. (12)

The interpretation of (12) is that the promise-keeping constraint determines the sensitivity of the

manager’s continuation value to liquidation shocks.

3.3 The Intermediary’s Problem

As a first step, we analyze the intermediary’s continuation value Wt given in (5) and its relation

to the manager’s value. Combining (2), (10), (11), and Dt = CEt − SMt , it is straightforward to

obtain that the payment process {cM} satisfies the following equation:

dcMt = dTt + βMt (dXt − aIt dt) + rDt−dt− dDt, (13)

where

dTt ≡ g(aIt |bt)dt+
1

2
θr(βMt σ)2dt+ ΛαMt dt.

The process {T} represents the manager’s expected compensation for risk and effort costs. As

expected, the intermediary’s payments to the manager depend on the level and dynamics of the

manager’s deficit Dt. In general, a higher Dt means a lower Wt, as more continuation value accrues

to the manager. It is thus convenient to introduce a variable that is a sum of the intermediary’s

continuation value and the manager’s deficit, wt ≡ Wt +Dt. Because the intermediary can at any

time appropriate Dt (and does so in the case that the firm is hit by a liquidation shock), we refer

to w as the intermediary’s gross value. Note that the intermediary’s limited liability constraint

Wt ≥ 0 is equivalent to wt ≥ Dt.

Alternatively, one can think of Dt as the intermediary’s liability to the manager. By maintain-

ing a deficit in the manager’s continuation value, Dt > 0, the intermediary defers the manager’s

monetary compensation. Thus, one can interpret Dt > 0 as a debt contract in which the interme-
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diary pledges his stake wt as collateral and makes the manager “borrow” on his behalf an amount

Dt ≤ wt by drawing on the savings account.

As a next step, we will determine the optimal level of savings SMt or, equivalently, the optimal

amount of Dt that the intermediary chooses. Owing to his relative impatience (γ > r), the interme-

diary has incentives to delay transfers to the manager, which means setting Dt > 0. However, due

to limited commitment, Dt > 0 induces a downward jump of the manager’s consumption if a Pois-

son shock terminates the contract, in which case the intermediary “defaults” on his liabilities, Dt.

As a consequence, when Dt > 0, the possibility of “default” requires an additional compensation

for the risk-averse manager.

We now illustrate how the optimal contract trades these forces off. Suppose that at time t

the intermediary wants to decrease the savings balance, SMt = CEt − Dt, by a marginal dollar

dDt = ε, while promising repayment including interest one instant later, at time t+dt via dDt+dt =

−ε(1 + rdt). If this transaction were risk-free, then the intermediary would gain in present value

terms at time t

ε− ε 1 + rdt

1 + γdt
= (γ − r)εdt+ o

(
(dt)2

)
' (γ − r)εdt.

Indeed, the risk that Brownian shocks drive the continuation value down to zero during [t, t+ dt),

given Wt > 0, is negligible. However, with probability Λdt, a Poisson shock occurs, thereby

triggering termination; in this case, the intermediary does not pay back the promised amount at

time t+ dt, which reduces the certainty equivalent by Dt + ε. Hence, the intermediary has to pay

additional risk compensation Λ (α(Dt + ε)− α(Dt)) during [t, t+ dt). Altogether, by increasing Dt

by ε, the intermediary expects a profit of

ε− ε 1 + rdt

1 + γdt
(1− Λdt)− Λ (α(Dt + ε)− α(Dt)) dt+ o

(
(dt)2

)
' (γ − r + Λ)εdt −

(
∂α(x)

∂x

∣∣∣∣
x=Dt

)
Λεdt. (14)

Because the manager is risk averse and therefore ∂2α(x)
∂x2

> 0, there exists an upper limit D∗, above

which increasing Dt becomes unprofitable, in that the profit in (14) is zero for Dt = D∗. We

formalize these findings in the following proposition.

Proposition 2. Let ΠM
DC solve problem (3)-(4) given ΠI

DC and ΠI
DC solve problem (6)-(7). Then,
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the manager’s savings satisfy

Dt = CEt − SMt = min{wt,D∗} with D∗ ≡ 1

θr
ln

(
γ − r + Λ

Λ

)
. (15)

Notably, Proposition 2 implies that the continuation value Wt can be directly inferred from

knowing wt via the mapping Dt. The reverse does not necessarily hold true, because the limited

commitment constraint is binding only whenever wt ∈ [0,D∗], in which case Wt = 0. Interestingly,

in this region Wt has neither drift nor volatility and stays constant at zero, which implies that

limited liability is never violated and that the intermediary cannot gain from leaving the contractual

relationship. In contrast, the gross value {w} also has a non-trivial law of motion when wt ∈ [0,D∗],

as the following lemma demonstrates.

Lemma 2. Let (ΠM
DC ,Π

I
DC) ∈ ICMDC × ICIDC . Then there exists a F-predictable process {βI} such

that in optimum, {w} solves the stochastic differential equation

dwt = (γ+ Λ)wt−dt+h(bPt )dt+ dTt + (r− γ−Λ)Dt−dt+βIt (dXt− aPt dt)−wt−dNt− dcIt , (16)

where Dt is given by (15).

From Proposition 2 and equation (16), it becomes clear why the liquidation risk Λ > 0 is

necessary to ensure a well-behaved and interesting solution to the model. When Λ→ 0, D∗ →∞,

which implies that it is optimal for the intermediary to delay payments to the manager as much

as the limited commitment constraint allows. In this case, Dt = wt and the intermediary can

effectively alter the timing of his compensation, in that he is essentially already able to enjoy all of

his promised future payoff wt at time t. Whence, (16) collapses to

dwt = rwt−dt+ h(bPt )dt+ dTt + βIt (dXt − aPt dt)− dcIt

and the intermediary effectively discounts at rate r. As a consequence, the impatience wedge

between principal and intermediary vanishes from the model, as does the corresponding agency

friction.10

10As DeMarzo and Sannikov (2006) also point out in a related setting, unconstrained borrowing at rate r leads to
a degenerate solution in which payouts to the intermediary are indefinitely delayed and the firm is run forever.

17



The interpretation of equation (16) is standard. Incremental payments from the principal

dwt + dcIt must grow on average by (γ + Λ)wt−dt to compensate the intermediary for his time

preference, the Poisson risk of termination, and the instantaneous cost h(bPt )dt + dTt that the

intermediary incurs.11 Lastly, the pay-performance sensitivity βIt makes rewards contingent on firm

performance and incremental output, thereby providing appropriate incentives to the intermediary.

To understand this, we illustrate how βIt induces the choice of aIt and bIt . Observe that the

intermediary maximizes the expected change of his continuation value Wt net the instantaneous

cost of monitoring and compensating the manager:

max
bIt∈{bL,bH},aIt≥0

EIt
[
dWt − h(bIt )dt− dcMt

]
s.t. βMt =

δaIt
bIt
. (17)

To solve problem (17), we first take bIt = b as given and determine the optimal effort level aIt . Using

EIt [dXt − aIt dt] = 0, it follows that

EIt
[
dWt − h(bt)dt− dcMt

]
= EIt [dwt − h(bt)dt− dTt − rDt−dt] .

Hence, only the expected change in the intermediary’s gross value dwt is relevant for his incentives,

not the expected change in his continuation value dWt. After rearranging, we obtain

aIt = aIt (b, β
I
t ) = arg max

a≥0
EIt [dwt − dTt] = arg max

a≥0

(
βIt a−

1

2

δa2

b
− 1

2
θr(σβMt )2

)
.

If the intermediary were now to deviate and choose bs = bL instead of bH on an interval [t, t+ dt],

then he would save the cost of monitoring (h(bH)− h(bL)) dt and compensating the manager

Ctdt ≡
[
g
(
aIt (bH , β

I
t )|bH

)
− g
(
aIt (bL, β

I
t )|bL

)]
dt+

θrσ2δ2

2

[
aIt (bH , β

I
t )2 − aIt (bL, βIt )2

]
dt

but also decrease the output by (aIt (bH , β
I
t )−aIt (bL, βIt ))dt on average. Therefore, choosing bIt = bH

is optimal if and only if

Ct + h(bH)− h(bL) ≤
(
aIt (bH , β

I
t )− aIt (bL, βIt )

)
βIt .

11This corresponds to the “promise-keeping constraint” in the discrete time formulation of the dynamic agency
problem of DeMarzo and Fishman (2007).
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This leads to the following proposition.

Proposition 3. Let (ΠM
DC ,Π

I
DC) ∈ ICMDC × ICIDC . There then exists a constant β̄ such that

a) Optimal effort satisfies aIt = āβIt .

b) Incentive compatibility, bIt = bPt = bH , requires βIt ≥ β̄.

The first result is intuitive. Higher incentives βIt push the intermediary to implement greater

effort and therefore provide higher incentives βMt to the manager. Remarkably, the second-best

effort level is aSB = ā and therefore aIt = βIt a
SB. Thus βIt directly measures the fraction of the

second-best effort that is implemented under the third best. The second result states that the

intermediary must have sufficient “skin in the game” to ensure diligent monitoring.

3.4 The Principal’s Problem

To start with, we argue that w rather than W summarizes the entire contract-relevant history

and therefore constitutes the only state variable in the principal’s problem.12 This arises for three

reasons. First, the continuation value W can be inferred when w is known and the reverse does

not hold true. Second, as the previous section highlighted, the volatility term of dw (i.e., the

sensitivity of gross value to incremental output dw/dX ' βI) is relevant for the intermediary’s

incentives. Indeed, the volatility of w and W need not coincide, as the latter is zero in the case

that w is sufficiently low. Third, and most importantly, the contract ΠI
DC must be terminated at

time τ I = min{t ≥ 0 : wt = 0} – i.e., when w rather than W falls to zero. Because limited liability

requires wt ≥ Wt ≥ 0 for all t ≥ 0, the process wt must have zero volatility when wt hits zero; in

this case, the contract ΠI
DC must set βI = 0 and therefore can no longer provide incentives. Put

differently, due to limited liability, wt = 0 implies that future payments dcIs are equal to zero, which

is equivalent to contract termination. Notably, the contract ΠI
DC can still provide incentives to the

intermediary (i.e., set βI > 0, when W = 0, as long as w > 0).

Next, we proceed to characterize the optimal payout policy {cI}. Observe that it is always

possible to compensate the intermediary by any amount ∆ > 0. This would reduce promised

payments by ∆ against a lump-sum transfer of the same magnitude. Hence, the principal’s value

function F (w) must satisfy F (w−∆)−∆ ≤ F (w). Letting ∆ go to zero, it follows that F ′(w) ≥ −1.

12To avoid clutter, we now drop time subscripts and refer only to w or W . These can be thought of as the
realizations of the random variable wt− or Wt− , respectively.
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Thus, the marginal cost of delaying the manager’s payout can never exceed the cost of an immediate

transfer. Because delaying payments is costly (owing to the intermediary’s relative impatience),

there exists a barrier w above which payouts become optimal, in that

F ′(w) = 1 and dcI = max{w − w, 0}.

The location of the boundary w is uniquely determined by the smooth pasting condition F ′′(w) = 0.

Finally, termination at w = 0 implies that F (0) = R.13 Because in optimum for w ∈ [0, w], the

principal must earn instantaneous return rF (w)dt equal to EP [(dX + dF (w)], the value function

solves the following HJB-equation subject to the previously derived boundary conditions:

(r + Λ)F (w) = max
βI≥β̄

{
a+

[
(γ + Λ)w + h(bH) + g(a|bH) + Λα

−D(γ + Λ− r) +
1

2
θr(σβM )2

]
F ′(w) +

1

2
(βIσ)2F ′′(w)

}
+ ΛR, (18)

where a = āβI and βM = aδ
bH

. It can be shown that F (·) is strictly concave on the interval [0, w).

The concavity of the value function captures the risk of inefficient contract termination when w

falls down to zero.

Eventually, we are able to characterize the optimal incentives {βI} that the principal can

provide. To get a sense of this, we look at the marginal benefit of increasing sensitivity βI

∂F (w)

∂βI
= ā︸︷︷︸

Increase
in output

+F ′(w)
δā2βI

bH︸ ︷︷ ︸
Direct

effort cost

+ rθσ2F ′(w)
δ2ā2βI

b2H︸ ︷︷ ︸
Risk

compensation

+F ′′(w)σ2βI︸ ︷︷ ︸
Additional
volatility

.

Notably, by choosing βI , the investor not only maintains incentive compatibility, but also induces

the intermediary to implement greater managerial effort. However, this requires the intermediary

to compensate the manager for the direct costs of effort and the additional risk that the manager

carries. Furthermore, providing higher incentives, βI is costly to the principal, as it increase the

volatility of w and thus the risk of inefficient termination.

To close this section, we summarize our findings.

Proposition 4. Let ΠM
DC solve problem (3)-(4) given ΠI

DC and ΠI
DC solve problem (6)-(7). Then

13We collectively refer to F ′(w) − 1 = F ′′(w) = F (0) − R = 0 as “the boundary conditions,” if no confusion is
likely to arise.
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the following holds:

a) The principal’s value function F (w) is the unique solution to equation (18) on the interval

[0, w]. For w > w the function F (w) satisfies F (w) = F (w) − (w − w) and cash-payments

dcI = max{w − w, 0} reflect w back to w.

b) The function F (·) is strictly concave on [0, w).

c) For all w ∈ [0, w] there exists β∗ = β∗(w) solving the first-order condition ∂F (w)
∂βI

= 0. The

principal optimally chooses

βI = βI(w) = max
{
β̄, β∗(w)

}
.

4 Solution – Delegated Monitoring

4.1 Contracting Problem

We now discuss the setting in which the principal can contract with both the intermediary and

manager directly. If no confusion is likely to arise, we use the same notation as the previous section.

Provided a contract ΠM
DM , the manager’s problem remains unchanged and is given by (1)-(2).

The intermediary then chooses the optimal monitoring {bI} problem, taking the menu ΠI
DM as a

given, i.e.,

W0(ΠI
DM ) ≡ max

{bI}
EI
[∫ τI

0
e−γt

(
dcIt − h(bIt )dt

)]
.

As usual, we will call ΠM
DM incentive-compatible if (SMt , a

M
t ) = (ŜMt , a

P
t ) and ΠI

DM incentive-

compatible if bIt = bPt = bH for any t ≥ 0.14

Eventually, the principal’s problem is given by

F0−(ΠM
DM ,Π

I
DM ) ≡ max

ΠM ,ΠI
EP
[∫ ∞

0
e−rtdXt −

∫ τI

0
e−rtdcIt −

∫ τM

0
e−rtdcMt

]
(19)

s.t. (ΠM ,ΠI) ∈ ICMDM × ICIDM ; (20)

V0(ΠM
DM ) ≥ v0, dc

I
t ≥ 0 and Wt(Π

I
DM ) ≥ 0 for all t ≥ 0. (21)

14Further, let ICKDM be the respective sets of incentive-compatible contracts for K ∈ {I,M}. Also note that
credibility is not an issue under delegated monitoring, because the principal can commit to any long-term contract.
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4.2 The Manager’s Problem

Let the manager’s continuation value under a contract ΠM
DM be defined by equation (8). The

following lemma establishes the law of motion of {V }.

Lemma 3. Let ΠM
DM ∈ ICMDM . There then exists a F-predictable process {βM} such that the

manager’s continuation value {V } solves the stochastic differential equation

dVt = rVt−dt− u(ĉMt , a
P
t )dt+ (−θrVt−)βMt

(
dXt − aPt dt

)
. (22)

Incentive compatibility SMt = ŜMt requires rVt− = u(ĉMt , a
P
t ) and incentive compatibility aMt = aPt

requires βMt =
δaPt
bH

. The manager’s implied consumption is given by (10).

The results of Lemma 3 are analogous to those in Lemma 1, albeit with one important difference.

The continuation value {V } is now independent of the Poisson risk {N}. Because the principal can

credibly commit to any payments, it is optimal not to expose the risk-averse manager to Poisson

shocks beyond his influence. As a consequence, the manager’s certainty equivalent evolves according

to

dCEt =
1

2
θr(βMt σ)2dt+ βMt (dXt − aPt dt). (23)

In addition, due to full commitment, we may assume without loss of generality that SMt = CEt is

implemented in equilibrium.15 Therefore, payments {cM} need to satisfy dcMt = dCEt+g(aMt |bH)dt.

4.3 The Intermediary’s Problem

Given an incentive-compatible contract ΠI
DI = ({cI}, {b}, τ I), the intermediary’s continuation value

reads

Wt ≡ EIt

[∫ τI

t
e−γ(s−t) (dcIs − h(bs)ds

)]
.

Using standard techniques, we obtain the following result.

15Because the principal can fully commit and discounts at rate r equal to the market interest rate, this assumption
is without loss of generality. We allow the manager to save so as to better highlight the differences and similarities
across our two contracting modes. Other dynamic contracting papers with a CARA-agent usually assume zero savings
(see He (2011), He et al. (2017), Marinovic and Varas (2018), Gryglewicz and Hartman-Glaser (2017), or Hackbarth
et al. (2018)).
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Lemma 4. Let ΠI
DM ∈ ICIDM . Then, there exists a F-predictable process {βI} such that in

optimum

dWt = (γ + Λ)Wt−dt+ h(bH)dt+ βIt
(
dXt − aPt dt

)
−Wt−dNt − dcIt . (24)

Incentive compatibility bIt = bPt = bH requires βIt ≥ λbH
aPt

.

Equation (24) is the natural analogue to equation (16), the delegated contracting problem. To

better understand the incentive compatibility condition, imagine that the intermediary deviates by

choosing bs = bL during one instant [t, t+ dt). Because the manager observes bs = bL, he will exert

effort aMs equal to bLβ
M
t /δ, instead of bHβ

M
t /δ, which reduces the expected output. However, the

intermediary also saves monitoring cost λ(bH − bL)dt. Hence, the intermediary’s deviation is not

profitable if

λ(bH − bL)dt ≤ (bH − bL)βMt
δ

βIt dt =⇒ λbH

aMt
≤ βIt . (25)

Interestingly, the constraint on βIt decreases in aMt . This means that all else being equal, it is easier

to incentivize monitoring when managerial effort is high.

4.4 The Principal’s Problem

The principal’s problem can be simplified be considering the gross value f(W0) ≡ F0−+CE0 instead

of F . The gross value f(W ) is a function of only W due to the absence of wealth effects with the

manager’s CARA utility.

Similarly to the delegated contracting model, the optimal payout policy follows a barrier strat-

egy. That is, there exists W which satisfies

dcI = max{0,W −W}, f ′(W ) = −1 and f ′′(W ) = 0.

Furthermore, the intermediary’s limited liability mandates a termination of the contract ΠI
DM when

W falls to zero, i.e., τ I = min{t ≥ 0 : Wt = 0} and f(0) = R.

By the dynamic programming principle, when dcI = 0, the principal’s required return rf(W )dt

must be equal to the expected net payoff plus the expected change in value EP [dX−dcM +df(W )].
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This implies the following HJB equation:

(r + Λ)f(W ) = max
a≥0,βI≥λbH

a

[
a− g(a|bH) + f ′(W ) ((γ + Λ)W + h(bH))

+
1

2
f ′′(W )(βIσ)2 − 1

2
θr(βMσ)2

]
+ ΛR, (26)

where βM = δa
bH

. Because of agency-induced risk aversion, f(·) is strictly concave on [0,W ) and

therefore βI = λbH
a . This means that the intermediary is exposed to as little cash-flow risk as

possible and the intermediary’s incentive-compatibility condition must bind in optimum.

Optimal managerial effort is then pinned down by the first-order condition of maximization,

∂f(W )
∂a = 0, which is equivalent to

1− δa

bH︸ ︷︷ ︸
Net benefits

of effort

−rθσ2 δ
2a

b2H︸ ︷︷ ︸
Risk

compensation

−f ′′(W )
(λbHσ)2

a3︸ ︷︷ ︸
Incentives to
intermediary

= 0. (27)

Remarkably, along its direct effect on output, managerial effort has a beneficial effect on the in-

termediary’s incentives (as f ′′(W ) < 0, the last term on the left-hand side of (27) is positive).

Higher effort a motivates the intermediary to monitor, in that a lower level of direct incentives

βI are needed to induce monitoring bH . As this makes the continuation payoff W less volatile,

the threat of termination becomes less severe. However, while decreasing the intermediary’s risk

exposure is beneficial, a higher level of a increases the volatility of the manager’s continuation value

V and therefore also the risk that the manager carries, which is costly due to his risk-aversion. We

summarize our findings in the proposition below.

Proposition 5. Let (ΠM
DM ,Π

I
DM ) solve problem (19)-(21). Then the following holds true:

a) The principal’s value function f(W ) is the unique solution to equation (26) on the interval

[0,W ]. For W > W the function f(W ) satisfies f(W ) = f(W )−(W−W ) and cash-payments

dcI = max{W −W, 0} reflect W back to W .

b) The function f(·) is strictly concave on [0,W ).
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5 Model Analysis

5.1 Incentives, Effort, and Performance

We now investigate the consequences for each of the two contracting settings, delegated contract-

ing and delegated monitoring, in terms of the levels and dynamics of their respective effort and

incentives. In particular, we examine whether financially sound firms that performed well in the

past should employ incentive schemes different from firms in financial distress. To facilitate com-

parisons, in this section we introduce subscripts for effort levels {aK} and incentives {βIK}, {βMK }

to correspond with the optimal contracts ΠI
K ,Π

M
K for K ∈ {DC,DM}.

5.1.1 Delegated Contracting

We first analyze the delegated contracting settings. In this case, the intermediary is provided

incentives for two reasons. First, the intermediary should have enough “skin in the game” to

sufficiently monitor the manager’s activities. Second, the intermediary’s compensation scheme

determines the contract that the intermediary offers the manager. In this regard, more incentive

pay, reflected by a higher value βIDC , motivates the intermediary to contract for more managerial

effort – that is, to provide more incentives βMDC to the manager. Loosely speaking, the intermediary

passes the incentives that he receives from the principal to the manager, for whom he acts as a

principal. Formally, this can be seen from the result aIDC = āβIDC (as established in Lemma 3) and

βMDC = aIDCδ/bH (as established in Lemma 1), such that the manager’s incentives βMDC and effort

aIDC are both linear and increasing in the intermediary’s incentives βIDC . This also means that the

sensitivities βMDC and βIDC co-move over time in the same direction.

To analyze the dynamics of incentives, we consider their level along the state variable w. As

w moves with output shocks dXt, a high w signifies financial strength after good performance and

a low w arises after a series of low output realizations, which bring the firm close to liquidation.

Recall that incentive compatibility for monitoring requires that βIDC(w) is at least β̄, but that the

cost-benefit trade-off of the intermediary’s incentives calls for βIDC(w) = β∗(w). Thus, optimal

βIDC(w) equals max{β̄, β∗(w)}. As pointed out previously, a higher value of βIDC creates additional

volatility in the intermediary’s compensation, as it leads the intermediary’s gross value w to react

more strongly to output realizations. Due to limited liability, the intermediary’s employment has to

be terminated if weak firm performance drives w to zero. With everything kept constant, increasing

βIDC makes liquidation more likely. As a consequence, when the threat of termination is severe and
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w = 0

IC condition binding: βIDC = β̄ > β∗;
dβI

dX ,
dβM

dX , dadX = 0.

β̄ = β∗
w = w

IC condition loose: βIDC = β∗ > β̄;
dβI

dX ,
dβM

dX , dadX > 0.

w

Figure 2: High-powered incentives for the intermediary for large w.

the firm undergoes distress – i.e., w is close to zero – the investor will provide just enough incentives

βIDC(w) = β̄ > β∗(w) to ensure sufficiently high monitoring bt = bH . Under these circumstances,

βIDC , βMDC remain constant and are not sensitive to small changes in cash flow dX.

By contrast, after sufficiently strong past performance, when w is high termination is less of a

concern and it instead becomes optimal to rely on incentive pay. The intermediary is then provided

with high-powered incentives βIDC(w) = β∗(w) > β̄ to stimulate managerial effort. The incentive-

compatibility condition for monitoring is then non-binding. Increasing w in this region further

reduces any agency-induced frictions, leading to higher incentives for both the intermediary and

the manager, in that dβIDC
/
dX > 0 and dβMDC

/
dX > 0. This means that both the manager’s and

the intermediary’s incentives have option-like features. Figure 2 depicts the two regions in w with

binding and loose incentive compatibility conditions.16 Figure 3 provides a numerical illustration

of the dynamics of the manager’s effort and the intermediary’s incentives. Importantly, moral

hazard leads to average output levels being strictly below the first- and second-best benchmarks

(i.e., aDC(w) < aSB for w < w). This also means that introducing intermediation moral hazard

generates an underprovision of managerial incentives – i.e., the manager’s incentives are lower in

the third-best than in the second-best. Only when the agency conflict between the principal and the

intermediary becomes locally resolved at the payout boundary w = w is the intermediary provided

the right amount of incentives to implement the second-best effort (i.e., aDC(w) = aSB). The

following corollary gathers the formal results for the preceding discussion.

Corollary 1. Let ΠM
DC solve problem (3)-(4) given ΠI

DC , and ΠI
DC solve problem (6)-(7). Further

let the corresponding the value function p(w) solve the HJB equation (18). Then the following holds

true:

a) Effort satisfies aDC(w) = aSB.

16To ensure that the region where βIDC(w) > β̄ is non-empty, we have to assume that exogenous parameters are
such that β∗(w) = 1 > β̄. Corollary 1 makes this assumption explicit.

26



0 0.5 1 1.5 2

0.6

0.7

0.8

0.9

1

1.1

0 0.5 1 1.5 2

0.6

0.7

0.8

0.9

1

1.1

Figure 3: Effort and incentives under delegated contracting. Effort aDC is below the second-best
benchmark and increases after good performance. The intermediary’s incentives are also increasing
in w. The parameters are such that aSB = 1: r = 0.046, γ = 0.05, Λ = 0.2 σ = 0.7, δ = 1, λ = 0.2,
bH = 1.11, bL = bH/2, θ = 5, A = 2, R = 0.2.

b) The optimal sensitivities βIDC , β
M
DC increase in w on an interval [w′, w], in that

∂βIDC(w)

∂w
≥ 0 and

∂βMDC(w)

∂w
≥ 0.

c) There exists a unique value w′′ ∈ (0, w) such that β∗(w) increases in w and βIDC(w) > β̄ on

(w′′, w] if and only if β∗(w) = 1 > β̄. Further, it holds on this interval that both sensitivities

increase strictly and that aDC(w) < aSB.

5.1.2 Delegated Monitoring

We now turn to analyze implications of the optimal contracts under delegated monitoring. From

the previous section, we recall that under delegated contracting, the principal has to provide the

intermediary’s incentives βIDC to stimulate both monitoring and contracting with the manager. The

principal sets the manager’s incentives βMDC only indirectly via βIDC . By contrast, under delegated

monitoring, she can directly set both βIDM and βMDM . This means that the principal selects βIDM

solely to stimulate monitoring. As before, providing incentives to the intermediary is costly due to

the agency-induced risk of termination. The principal also chooses the manager’s incentives βMDM ,

which determine the effort level aDM . Incentive-provision to the manager is costly, as this requires

exposing him to risk. However, in contrast to raising βIDM , increases to managerial incentives βMDM

do not also increase the likelihood of termination, but instead require additional risk compensations

to be paid to the risk-averse manager.
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Figure 4: Effort and incentives under delegated monitoring. Effort aDM always exceeds the second-
best benchmark and decreases after good performance. The intermediary’s incentives increase but
are less than the incentives under delegated contracting. The parameters are such that aSB = 1:
r = 0.046, γ = 0.05, Λ = 0.2 σ = 0.7, δ = 1, λ = 0.2, bH = 1.11, bL = bH/2, θ = 5, A = 2, R = 0.2.

The sensitivities βMDM and βIDM are interrelated but not in the same way as in the delegated

contracting environment. The principal can now freely set the manager’s incentives and – taking

the desired level aDM as given – optimally sets βIDM = bHλ/aDM such that the intermediary’s

incentive-compatibility constraint binds. Notably, an increase in managerial effort aDM decreases

βIDM and thus relaxes the intermediary’s incentive compatibility constraint. This owes to a higher

output rate, which makes a deviation in monitoring more costly for the intermediary. As a conse-

quence, the choice of managerial effort has opposite effects on the incentives and risk that both the

manager and intermediary face. High managerial effort increases incentives and risk for the man-

ager, but decreases incentives and risk for the intermediary. The optimal effort choice is thus also

determined by risk-sharing considerations between the manager and the intermediary. Whereas the

cost of exposing the manager to risk is stationary, additional volatility βIDM for the intermediary’s

continuation value is particularly costly when W is low. Therefore, under distress, it is optimal for

the principal to provide high-powered incentives to the manager and low-powered incentives to the

intermediary. The opposite occurs after good performance, when W is large. Figure 4 illustrates

this point in a numerical example. Positive performance leads to a gradual shift of risk exposure

from the manager to the intermediary – that is, dβMDM
/
dX < 0 and dβIDM

/
dX > 0. Notably, the

manager’s compensation under DM is particularity sensitive to negative performance, which is a

stark contrast to the option-like characteristics of optimal compensation under DC.

Given that higher effort alleviates moral hazard frictions by relaxing the intermediary’s in-

centive compatibility constraint, the principal finds it optimal to implement effort above at the
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second-best level — i.e. to set aDM (W ) > aSB. Agency frictions between the intermediary and

principal resolve once W approaches W ; implemented effort aDM (W ) then decreases in W such

that eventually aDM (W ) = aSB. Remarkably, managerial incentives behave differently under the

two contracting environments. While strong firm performance leads to decreased managerial in-

centives under delegated monitoring, it leads to increased managerial incentives under delegated

contracting.

Because risk can be shifted from the intermediary to the manager under delegated monitoring,

the intermediary generally receives stronger incentives when contracting is delegated – that is,

βIDM < βIDC .17 By contrast, the manager generally receives weaker incentives when contracting is

delegated – that is, βMDM > βMDC . The following corollary gathers the formal results related to the

discussion in this section.

Corollary 2. Let (ΠM
DM ,Π

I
DM ) solve problems (19)-(21), and let the corresponding value function

f(·) solve the HJB equation (26). The following then holds true:

a) Effort satisfies aDM (W ) ≥ aSB with equality, if and only if W = W .

b) If β̄ ≥ λbH
ā , then βIDM (W ) ≤ βIDC(w) for all (W,w) ∈ [0,W ]× [0, w], where the inequality is

strict if W < W .

c) If β̄ < 1, then there exists a value w′ ∈ [0, w) such that βMDM (W ) ≥ βMDC(w) for all (W,w) ∈

[0,W ]× [w′, w], where the inequality is strict if W < W .

d) The optimal sensitivities βIDM and βMDM move in different directions, i.e.,

∂βIDM (W )

∂W
×
∂βMDM (W )

∂W
< 0.

Further, there is a unique value W ′ ∈ [0,W ] such that βIDM (W ) strictly increases and

βMDM (W ) strictly decreases to the right of W ′. If γ − r is sufficiently small, the claim holds

true everywhere, in that W ′ = 0.

17This holds under some weak assumptions on exogenous parameters, which we found to be easily satisfied in our
numerical analysis. See Corollary 2.
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5.2 Modes of Contracting and Implications for Managerial Incentives

5.2.1 Financial Intermediation

To map the two modes of contracting to actual types of financial intermediation, we would ideally

like to know the explicit and implicit components of the investor-intermediary relationship. While

there are valuable systematic studies of contracts between intermediaries and portfolio firms (see

Kaplan and Strömberg (2003) for the case of venture capital), there is little empirical research on

contracting between investors and financial intermediaries, such as venture capital funds, private

equity funds, or hedge funds. With this caveat, we posit that one can interpret private equity in-

vestment as an example of intermediation under delegated monitoring. Limited partners (investors)

provide funds and contract with general partners (intermediaries). Contracting with managers of

portfolio firms is, to a large degree, standardized; the conditions of such contracts are (possibly

implicit) parts of contracts between limited partners and general partners. Kaplan and Strömberg

(2009) term the set of standard incentives and governance practices applied to portfolio firms as

the “governance engineering” of private equity. Other aspects of investment such as time horizon,

financing structure, target firms characteristics are also pre-specified. Altogether, these features

align private equity intermediation with our model’s DM mode.

With this interpretation of private equity investment, the predictions of the previous section

prompt a reevaluation of some empirical evidence of private equity performance. Numerous stud-

ies, such as Leslie and Oyer (2008), Acharya et al. (2012), and Cronqvist and Fahlenbrach (2013),

show that private equity investment increases managerial incentives in target firms. The common

interpretation of this empirical pattern is that private equity is a superior owner who can improve

firm governance. By contrast, our model of intermediation under delegated monitoring suggests

that increased managerial incentives after private equity investment are an optimal way to deal

with moral hazard in monitoring by an intermediary. To put it differently, the common interpre-

tation implies that incentives before private equity investment are suboptimal and “governance

engineering” fixes them, but this is not the case in our model’s interpretation.18

More generally, there are two possible cases for how the mode of intermediation is determined

in practice. First, under some circumstances, contracting directly with the manager is not feasible,

such that intermediated investment in the delegated contracting mode is the only possibility. This

18Firm ownership and monitoring by other types of financial intermediaries has been shown to increase managerial
incentives in, e.g., Hartzell and Starks (2003) and Brav et al. (2008). Our model suggests a need to pay attention
to the different types of intermediaries and to exercise caution when interpreting higher managerial incentives as a
marker of the intermediary’s performance or superior monitoring skills.
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occurs when the principal has no direct contact with the manager and when the contract that the

intermediary offers to the manager is not contractible for the relation between the principal and

the intermediary. If this is the case, the principal has to involve a specialized intermediary.

Second, the mode of contracting can be determined by a cost-benefit analysis. As expected,

agency conflicts can be easier to address when the principal is able to contract directly with the

manager rather than via an intermediary who is also subject to moral hazard. Specifically, as

the principal can commit to any feasible contract, she can therefore replicate the DC outcome

in the DM environment. In practice, contracting with ultimate agents can be complex and time

consuming, and the DM mode can become more costly than the DC mode.19 Given the level of this

cost, it can be optimal to delegate the contracting task to an intermediary. We consider situations

in which the mode of contracting can be chosen optimally in Section 5.3.

5.2.2 Boards of Directors and Say-on-Pay

In another interpretation of our model, the intermediary represents a board of directors. In this

case, both modes of contracting can arise depending of the regulatory environment.20 In their

traditional roles, shareholders delegate to boards both monitoring of and contracting with managers.

This environment corresponds to the DC setting of our model. Adoption of various say-on-pay

regulations21 changed these traditional roles and brought about an increase in shareholders’ direct

participation in arranging executive compensation. These regulations shifted the shareholders-

board-manager relationship toward the DM setting of our model, in which shareholders determine

the manager’s compensation directly.

As much as adoption of say-on-pay regulations switches the contracting setting from DC to DM,

our model predicts two main effects related to executive compensation. First, the manager’s per-

formance pay would increase. Second, compensation contracts would lose their option-like features

and instead incentives would increase after poor performance. There is clear empirical evidence for

19Papers such as Aghion and Tirole (1997) and Burkart et al. (1997) suggest endogenous reasons for delegation
in principal-agent models, building on asymmetric information, communication, and dispersed ownership. Such
far-reaching extensions are beyond the scope of this paper.

20To further support the interpretation in which the intermediary represents a board of directors, we solve a variant
of our model in which the intermediary and the manager have similar preferences and are subject to similar frictions.
Section S.3 of the Supplementary Appendix shows that our model’s quantitative predictions for incentive levels carry
over into a setting in which the intermediary’s frictions to contracting come from CARA preferences rather than from
limited liability. As the problem is stationary, the optimal contract does not feature option-like characteristics, in
that incentives do not change with performance.

21The first say-on-pay regulation was introduced in the U.K. in 2002, mandating advisory shareholder votes on
executive compensation. In the U.S., a related regulation was included in the Dodd-Frank Act of 2010. Some
European countries introduced binding say-on-pay votes.
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both effects. Pay-for-performance increases after adoption of pay-on-say regulation (Correa and Lel

(2016), Iliev and Vitanova (2018)). Shareholders’ say-on-pay votes result in increasing sensitivity

of pay to poor realizations of performance (Ferri and Maber (2013), Alissa (2015)). Notably, our

explanation of these empirical facts simply accounts for changes in the contracting environment

with say-on-pay adoption. It thus differs from the two most common explanations of say-on-pay

regulations’ effects, which postulate frictions due either to managerial power (e.g., Coates (2009),

Bebchuk et al. (2007)) or to unsophisticated shareholders (e.g., Bainbridge (2008), Kaplan (2007)).

5.3 How to Deal with Severe Agency Conflicts?

Are more severe agency conflicts at the firm level better addressed by intermediation with delegated

contracting or delegated monitoring? Do more severe agency conflicts at the intermedairy level

promote delegated contracting or delegated monitoring? In this section, we analyze these questions

and study the investor’s and the intermediary’s values under optimal contracts with varying levels

of agency conflicts. In our model, moral hazard at the intermediary level is more pronounced when

λ or σ is high. Whereas a higher cost of monitoring (measured by λ) increases the intermediary’s

benefit of deviating and not monitoring, a more noisy output process (measured by σ) makes it

more difficult for the principal to detect deviations. Similarly, moral hazard at the firm level is

severe whenever δ or σ are high.

To study the investor’s point of view, we analyze differences in the initial values for FDM−FDC

at the time that the contract is initiated. Similarly, the intermediary’s initial difference in values

is given by WDC −WDM . For a clear comparison, we assume that the principal has all of the

bargaining power and that the manager’s outside option is zero.22 As discussed above, because of

some of the fixed costs of delegated monitoring, delegated contracting can be more attractive for

the investor. Thus, the effects of changes in agency cost parameters on FDM − FDC represent a

shifting preference for the investor for this form of intermediation – even if FDM − FDC remains

positive under our assumptions. In the subsequent analysis, we use the same parameter values

as in Section 5.1. While we cannot prove the presented relations analytically, they are robust to

extensive numerical simulations under the various parametrizations we have tried.

The top panels of Figure 5 show that more severe agency problems at the intermediary level,

or a higher λ, make delegated contracting relatively more attractive for the principal. This may be

22Under the principal’s full bargaining power, WDC ≡ WDC
0− ∈ arg maxW≥0 F

DC(W ) and FDC ≡ FDC(WDC).
Similarly, WDM ≡ WDM

0− = arg maxW≥0 F
DM (W ) and FDM ≡ FDM (WDM ). Note that with our assumption that

CE0− = 0, WDC equals wDC and FDM equals fDM at time zero.
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Figure 5: Delegated contracting becomes more suitable when monitoring costs increase. The
parameters are: r = 0.046, γ = 0.05, Λ = 0.2, σ = 0.7, δ = 1, bH = 1.11, bL = bH/2, θ = 5, A = 2,
R = 0.2.

surprising, as it implies that the more difficult it is for the intermediary to monitor the manager, the

more the principal relies on the intermediary by delegating him the responsibility to contract with

the manager. The rationale for our result is that in the optimal DC contract, the intermediary

has more “skin in the game” than under the optimal DM contract and is thus less sensitive to

the increasing costs of monitoring. More specifically, note that an increase in λ tightens the

intermediary’s incentive compatibility constraints in both cases – that is, βIDM ≥ λbH/a under DM

and βIDC ≥ β̄ (as ∂β̄
/
∂λ > 0) under DC. While under DM, the incentive compatibility constraint

is always binding, under DC this is only the case when w is close to zero; otherwise, incentives are

high-powered and βIDC > β̄. Consequently, an increase in λ is particularly costly for the principal

under DM when he directly contracts with the manager. Our results thus suggest that a difficult

monitoring task can be efficiently incentivized by delegating the responsibility of contracting with

the manager to the intermediary, which provides the intermediary additional skin in the game and

thus the necessary incentives.

In a similar spirit, the top panels of Figure 6 show that severe moral hazard at the firm level,

or a high δ, is also best dealt with by delegating the contracting task. According to our model,

this occurs because higher effort costs, ceteris paribus, lead to lower managerial effort throughout

the whole lifetime of the firm. This reduction in effort again tightens the intermediary’s incentive
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Figure 6: Delegated contracting becomes more suitable to address severe moral hazard at the firm
level. The parameters are: r = 0.046, γ = 0.05, Λ = 0.2, σ = 0.7, λ = 0.2, bH = 1.11, bL = bH/2,
θ = 5, A = 2, R = 0.2.
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Figure 7: Cash-flow volatility σ has an ambiguous effect. The parameters are: r = 0.046, γ = 0.05,
Λ = 0.2, δ = 1, λ = 0.2, bH = 1.11, bL = bH/2, θ = 5, A = 2, R = 0.2.

compatibility constraints in both contracting modes and is therefore more harmful under delegated

monitoring than under delegated contracting. The bottom line is that whenever moral hazard at

the firm or intermediary level is severe, contracting with the manager becomes difficult and the

investor may find it more attractive to delegate this task.
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The top panels of Figure 7 present the effects of output risk σ on the investor’s value. Remark-

ably, increasing σ has an ambiguous effect on FDM − FDC . The difference between the working

of agency costs measured by σ versus λ and δ is driven by two mechanisms. While under DC, λ

and δ had direct effects on the the intermediary’s risk only when w is large, a higher σ increases

the intermediary’s risk exposure at any time. Because the intermediary receives higher powered

incentives when he contracts with the manager (see Corollary 2), the adverse effects of additional

volatility σ are stronger under DC. Furthermore, an increase in volatility reduces implemented

effort and triggers a tighter incentive compatibility constraint under DM. As shown in Figure 7,

the first effect outlined above dominates for small values of σ and so an increase in σ makes direct

and then delegated contracting more attractive.

The effect of agency conflicts’ severity on the intermediary’s preference for DC versus DM

tends to be the opposite of the investor’s; see the bottom panels of Figures 5, 6, and 7. Specifically,

with increasing λ and δ, the difference between the intermediary’s initial value under DC and

DM decreases. The primary effect is that severe agency conflicts decrease managerial effort and

incentives. Weak managerial incentives require stronger incentives for monitoring under DM but

not under DC. Thus, the intermediary’s expected rent decreases in λ and δ under DC and increases

under DM. By contrast, higher output volatility σ makes it optimal to limit termination risk by

initially promising a higher stake to the intermediary. This effect is stronger under DC than under

DM – i.e., when the intermediary is highly incentivized – and dominates for lower σ values. This

results in the largest difference between the intermediary’s stake across the two contracting modes

for intermediate σ values.

6 Discussion of Assumptions and Robustness

Our model entails a number of assumptions that are mainly designed to enhance simplicity and

to facilitate a clear analysis of the main forces in a tractable model. Below, we discuss these

assumptions and the robustness of the results.

The manager’s patience. In our exposition, we assumed throughout that the manager discounts

at the market interest rate r and is therefore more patient than the intermediary. This assumption

is without loss of generality: our results remain qualitatively unchanged if the manager discounted

at some rate ρ 6= r (e.g., ρ ≥ γ), as becomes apparent from the model solution with a general

discount rate in the Supplementary Appendix S.1.
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The manager’s CARA preference. With CARA preferences, the state variable Vt – the agent’s

continuation utility – separates out due to the absence of wealth effects. This means that one does

not have to explicitly keep track of Vt. As a consequence, we are able to characterize the optimal

contract by means of an ordinary differential equation. If we assumed a different utility function, the

agent’s continuation value would become a relevant state and, in general, we would have to solve a

partial differential equation. Furthermore, non-CARA preferences would add further complications

to the analysis of incentive provision for the agent with hidden savings (see, e.g., Di Tella and

Sannikov (2016) or He (2012)).

Unobservable savings and consumption. Because the intermediary is protected by limited lia-

bility and cannot fully commit, we assume that the manager can maintain a savings account that

can be consumed after firm termination. When savings are not observable, incentive compatibility

requires that (discounted) marginal utility follows a martingale, which pins down the manager’s

consumption. If, by contrast, the manager’s savings were observable, then the principal could in

effect control the manager’s consumption, adding another control variable to the principal’s maxi-

mization problem. While under these circumstances the optimal contract is still characterized by

an ODE, the problem would be far less tractable, as illustrated in, e.g., He et al. (2017). The model

outcomes are unlikely to hinge on the assumption of unobservable savings.

The intermediary’s risk neutrality. In the Supplementary Appendix S.3, we solve a model where

the intermediary also has CARA preferences. In this case, the problem becomes fully stationary,

the provision incentives become independent of past firm performance, and, in particular, the inter-

mediary’s contract loses its option-like features. However, some of our main findings on incentives

remain unchanged. In particular, the intermediary (manager) receives more (less) incentives under

delegated contracting.

7 Conclusions

In this paper, we study the effect of intermediation and monitoring on optimal long-term contract-

ing. In a dynamic model that features an investor, an intermediary, and a manager, we focus on

the provision and dynamics of incentives. The investor contracts with the intermediary and sepa-

rately with the manager in the delegated monitoring mode. The investor contracts only with the

intermediary and the intermediary contracts with the manager in the delegated contracting mode.

Optimal contracts provide incentives to both the intermediary and the manager as an exposure to
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firm performance. In delegated contracting, the manager incentives need to be passed over through

the intermediary’s incentives. This has an effect that the manager’s incentives and effort are be-

low the second-best levels (i.e., those without the intermediary’s moral hazard), but increase with

firm performance. In delegated monitoring, high managerial incentives and effort can alleviate the

intermediary’s incentive compatibility constraint. As a consequence, the manager’s incentives and

effort are above the second-best levels and decrease with firm performance. In our analysis, we

discuss scenarios in which either of the two contracting modes may be optimal.

37



Appendix A: Preliminaries

A.1 Regularity Conditions

Throughout the paper and for all problems, we impose finite utility

EM
[∫ τM

0
e−rs|u(ĉMs , a

M
s )|ds

]
<∞

and the usual square integrability conditions of transfers:

EK
[∫ τI

0
e−rtdcIs

]2

<∞ and EK
[∫ τM

0
e−rtdcMs

]2

<∞ (A.1)

for all K ∈ {P, I,M}. Next, note that

ŜMt =

∫ t

0
er(t−s)dcMs −

∫ t

0
er(t−s)c̃Ms ds+ ŜM0 ert

for a consumption process {c̃M}. Define {ĉM} as the (up to a null set) unique process, implying
SMt = ŜMt for all t with probability one, given SM0 = ŜM0 .

Furthermore, we impose the transversality condition

lim
t→∞
|SMt − ŜMt | = 0 a.s. =⇒ lim

t→∞
|ĉMt − c̃Mt | = 0 a.s. ,

where {c̃M} is the almost surely unique consumption process, which implies a certain savings
process {ŜM}.

For technical reasons, we postulate that the processes {βK}, {αK} are almost surely bounded,
so that |βKt |, |αKt | < M almost surely, i.e. P

(
|ψKt | < M

)
= 1 for ψ ∈ {α, β}, for any t and

K = I,M . The equivalence of the measures {P,PK : K = P, I,M} (to be discussed in the
next paragraph) ensures that the sensitivities are almost surely bounded under each probability
measure used throughout the paper. We assume M ∈ R+ to be sufficiently large, so that this
imposed constraint actually never binds in optimum.

A.2 Change of Measure

To start with, fix a probability measure P0, such that dXt = σdZ0
t with a F-progressive standard

Brownian Motion {Z0} under the measure P0. Take a progressive process {at}0≤t≤τM of bounded
variation and define the process {χ} via χt = at/σ for all t ≥ 0, almost surely. Further, let

Γt = Γt(a) = exp
(∫ t

0
χudZ

0
u −

1

2

∫ t

0
χ2
udu

)
.

Assuming that the so-called Novikov condition is satisfied, i.e.,

E0

[
exp

(
1

2

∫ τM

0
χ2
tdt

)]
<∞,

it follows that {Γt}0≤t≤τM follows a martingale. Given our restriction of bounded sensitivities,
the Novikov-Condition is evidently met. Due to E0[Γ0] = 1, it is evident that {Γt}0≤t≤τM is a
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progressive density process and defines a probability measure Pa via the Radon-Nikodyn derivative(
dPa

dP

)∣∣∣∣
Ft

= Γt.

Under the probability measure Pa, the process {Z} with

Zt = Z0
t −

∫ t

0
χudu =

Xt −
∫ t

0 audu

σ

follows a standard Brownian Motion up to the stopping time τM . In the following, given a process
{aK} that satisfies the above stated conditions, we adopt the notation PK ≡ PaK for all K ∈
{P, I,M}. All measures {P0,Pa : {a}} are equivalent for suitable processes {a}, that satisfy the
above stated conditions, such that the measures share the same null sets.

Appendix B: The Manager’s Problem (DC) - Proof of Lemma 1

We split up the proof in two parts. First, we establish the representation of {V } by means of a
stochastic differential equation, given a contract ΠM

DC . From there, we proceed to show the claim
regarding incentive compatibility.

B.1 Martingale Representation

Proof. Let in the following ΠM
DC = ({aI}, {cM}, {SM}, τM ) represent the manager’s contract. We

denote the manager’s continuation value by

Vt = Vt(Π
M
DI) = EIt

[∫ ∞
t

e−ρ(s−t)u(ĉMs , a
I
s)ds

]
= EIt

[∫ ∞
t

e−ρ(s−t)u(ĉMs , a
I
s)ds

]
,

because the measures PI and PM agree in equilibrium and {aM} = {aI}, {c̃M} = {ĉM}, where
{ĉM}, is the “recommended consumption” and {c̃M} the “actual consumption” process. Define

At ≡ EIt
[∫ ∞

0
e−rtu(ĉMs , a

I
s)ds

]
=

∫ t

0
e−rsu(ĉMs , a

I
s)ds+ e−rtVt(Π

M
DI) (B.1)

By construction, {At : 0 ≤ t ≤ ∞} is a square integrable martingale, progressive with respect to F
under PI = PM . By the martingale representation theorem, there exist now F-predictable processes
{αM}, {βM} such that

ertdAt = (−θrVt−)βMt
(
dXt − aIt dt

)
− (−θrVt−)αMt

(
dNt − Λdt

)
.

and therefore

dVt = rVt−dt− u(ĉMt , a
I
t )dt+ (−θrVt−)βMt

(
dXt − aIt dt

)
− (−θrVt−)αMt

(
dNt − Λdt

)
.

B.2 Incentive Compatibility

Proof. We prove first the following auxiliary Lemma
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Lemma 5. Fix F-predictable processes {aM}, {ĉM} and let S ∈ R. Consider the problem

Vt = max
{c̃Ms }s≥t

EMt
[∫ ∞

t
e−r(s−t)u(c̃Ms , a

M
s )ds

]
subject to d∆M

s = r∆M
s ds+ ĉMs ds− c̃Ms ds,∆M

t = 0 and lim
s→∞

|∆M
t −∆M

s | = 0 a.s.

Next consider the problem

V ′t = max
{cs}s≥t

EMt
[∫ ∞

t
e−r(s−t)u(cs, a

M
s )ds

]
subject to d∆M

s = r∆M
s ds+ ĉMs ds− csds,∆M

t = S and lim
s→∞

|∆M
t −∆M

s | = 0 a.s.

Then, ct + rS = c̃Mt and V ′t = e−θrSVt.

Proof. Suppose that there exists a process {c′} 6= {c}, which satisfies the transversality condition,
such that

V ′t ({c′}) > V ′t ({c}) = e−θrSVt.

Define the process {c′′} via c̃Mt = c′′t − rS. Then {c′′} satisfies the transversality condition and

EMt
[∫ ∞

t
e−r(s−t)u(c′′s , a

M
s )ds

]
= eθrSV ′t ({c′}) > Vt,

a contradiction.

Next, we provide necessary and sufficient conditions for ΠM
DC to be incentive-compatible, in that

ŜMt = SMt and aMt = aIt for all t ≥ 0 holds almost surely. Define ∆t ≡ ŜMt − SMt the deviation
state with ∆0 = 0 and note that

d∆t = r∆tdt+ ĉMt dt− c̃Mt dt,

where {ĉM} is such that SMt = ŜMt , i.e. ∆t = 0 for all t. Note that dZMt ≡ (dXt − aMt dt)
/
σ is the

increment of a standard Brownian Motion under the measure PM . We rewrite

dVt = rVt−dt− u(ĉMt , a
I
t )dt+ (−θrVt−)βMt

(
dZMt + (aMt − aIt )dt

)
− (−θrVt−)αMt

(
dNt − Λdt

)
.

Let t > 0 and suppose the manager follows the recommended policy from time t onwards, in that
aMs = aIs and c̃Ms = ĉMs + r∆t for all s ≥ t. The payoff from following this strategy is represented
by the auxiliary gain process

GMt ≡ GMt (c̃M , aM ) =

∫ t

0
e−rsu(c̃Ms , a

M
s )ds+ e−θr∆te−rtVt

=

∫ ∞
0

e−rsu(c̃s, a
M
s )ds+

∫ ∞
t

e−rs
(
e−θr∆tu(ĉMs , a

I
s)− u(c̃Ms , a

M
s )
)
ds

and by means of Lemma 5, it suffices to consider deviations of this type, which yield weakly higher
payoff than deviation of any other type.

Next, note that the transversality condition limt→∞∆t = 0 a.s. implies that limt→∞ |ĉMt −c̃Mt | =
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0 a.s. for any possible strategy of the manager. Therefore,

lim
t→∞

∫ ∞
t

e−rs
(
e−θr∆tu(ĉMs , a

I
s)− u(c̃Ms , a

M
s )
)
ds = 0 a.s.,

which implies that the manager’s actual payoff equals

V ′0− = max
{c̃},{â}

EM
∫ ∞

0
e−rsu(c̃s, âs)ds = max

{c̃},{â}
EMGM∞ = max

{c̃},{â}
EM lim

t→∞
GMt .

By Itô’s Lemma:

eθr∆tertdGMt

=

(
u(c̃Mt , a

M
t )eθr∆t − u(ĉMt , a

I
t )− θrVt−(r∆t + ĉMt − c̃Mt ) + (−θrVt−)βMt (aIt − aMt )

)
dt

+ (−θrVt−)βMt dZ
M
t − (−θrVt−)αMt (dNt − Λdt)

≡ µMtG(·)dt+ (−θrVt−)βMt dZ
M
t − (−θrVt−)αMt (dNt − Λdt)

Observe that, because {αM}, {βM} are bounded and finite utility is imposed, we have

EK
(∫ t

0
e−rsβMs (−θrVs−)dZs

)
= EK

(∫ t

0
e−rsαMs (−θrVs−)(dNs − Λds)

)
= 0,

for any K ∈ {P, I,M}. It is then evident that by choosing aMt = aIt , c̃
M
t = ĉMt , the manager can

ensure that ∆t = µMtG(·) = 0 for all t ≥ 0, in which case {GM (ĉM , aI)} follows a martingale under
PM with last element GM∞(·), such that EM |GM∞(ĉM , a)| < ∞ due to the regularity conditions we
impose. Hence, by optional sampling

V ′0− = max
{c̃M},{â}

EMGM∞(c̃M , aM ) ≥ EMGM∞(ĉM , aI) = lim
t→∞

EMGMt (ĉM , aI) = V0− .

Next, observe that the highest value that µMtG(·) can obtain given ∆t is given by the maximization
over c̃Mt and aMt , where the solution evidently satisfies the FOC:

uc(c̃
M
t , a

M
t )erθ∆t = −θrVt− ⇐⇒ uc(c̃

M
t + r∆t, a

M
t ) = −θrVt−

⇐⇒ u(c̃Mt + r∆t, a
M
t ) = rVt− ;

ua(c̃
M
t , a

M
t )eθr∆t = (θrVt−)βMt ⇐⇒ −uc(c̃Mt + r∆t, a

M
t )

δaMt
bIt

= (θrVt−)βMt

⇐⇒ u(c̃Mt + r∆t, a
M
t )

δaMt
bIt

= rVt−β
M
t .

If ΠM
DC is such that rVt−e

−θr∆t = u(ĉMt , a
I
t ) and βMt = aIt δ/b

I
t hold for all t ≥ 0, it follows that

the FOC are satisfied by c̃Mt = ĉMt aMt = aIt for all t ≥ 0, in which case ∆t = µMtG(·) = 0. Indeed,
because the deviation gains are concave in the state ∆, the first order conditions are sufficient.

Hence, any other strategy {c̃M}, {aM} makes the process {GM (c̃M , aM )} a supermartingale
under the measure PM , i.e.

V0− = GM0 (ĉM , aI) ≥ EMGMt (c̃M , aM )
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Because our regularity conditions ensure that {GM (c̃M , aM )} is bounded from below, we can thus
take limits on both sides and apply optional sampling to obtain

V0− ≥ lim
t→∞

EMGMt (c̃M , aM ) = EM lim
t→∞

GMt (c̃M , aM ) = EMGM∞(c̃M , aM )

and in particular

V0− ≥ max
{c̃M},{â}

EMGM∞(c̃M , aM ) = V ′0− .

Therefore, V0− = V ′0− and (c̃Mt , a
M
t ) = (ĉMt , a

I
t ) for all t ≥ 0 is the optimal strategy for the agent,

in that ΠM
DC ∈ ICMDC .

If there exists a F stopping time τ ′ such that PM (τ ′ < τM ) > 0 and either rV(τ ′)−e
−θr∆τ ′ =

u(ĉMτ ′ , a
I
t ) or βMτ ′ = aIτ ′δ/b

I
τ ′ fail to hold, then there are also processes {c̃M}, {aM}, and a set

A ∈ [0, τ)× Ω with

µMtG > 0 for all (t, ω) ∈ A and L̂ ⊗ PM (A) > 0,

where L̂ is the Lebesgue measure on the Lebesgue sigma algebra in R. Then,

V ′0− ≥ V0− +

∫
A
e−rzµMzGd(L̂(z)⊗ PM (ω)) > V0− .

Consequently, {aI}, {ĉM} is not the optimal strategy for the agent, such that there exists with pos-
itive probability a time t where (c̃Mt a

M
t ) = (ĉMt , a

I
t ) fails. Whence, ΠM

DC 6∈ ICMDC , which concludes
the proof.

Appendix C: The Intermediary’s Problem (DC) - Proof of Lemma
2 and Propositions 2, 3

In this section, we prove the claims of Lemma 2 (see Step I) and Propositions 2, 3 (see Step III).
In step II, we establish an auxiliary result, which is then utilized in step III to conclude the proof.

In the following let ΠI
DC = ({bP }, {cI}, τ I) be the intermediary’s contract. We may assume

that the intermediary’s contract is terminated at the latest when a Poisson shock terminates the
firm, i.e. τ I ≤ min{t ≥ 0 : Nt = 1}; we verify this claim when discussing the principal’s problem.
For notational convenience, we write τ = τ I , if no confusion is likely to arise.

C.1 Step I - Proof of Lemma 2

Proof. Utilizing the result, i.e. (S.2), from supplementary appendix S.2 (integration by parts) we ob-
tain an integral expression for wt. Because the measures PP and PI agree in equilibrium/optimum,
it follows that for t < τ :

wt ≡ EPt
[ ∫ τ

t
e−γ(s−t)dcIs −

∫ τ

t
e−γ(s−t)[h(bPs ) + (γ + Λ− r)Ds−

]
ds−

∫ τ

t
e−γ(s−t)dTs

]
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and {bI} = {bP } and {aI} = {aP }. Next, define for t < τ I

APt ≡ EPt
[ ∫ τ

0
e−γsdcIs −

∫ τI

0
e−γs

[
h(bPs ) + (γ + Λ− r)Ds−

]
ds−

∫ τ

0
e−γsdTs

]
=

[ ∫ t

0
e−γsdcIs −

∫ t

0
e−γs

[
h(bPs ) + (γ + Λ− r)Ds−

]
ds−

∫ t

0
e−γsdTs

]
+ e−γtwt.

By construction {AP } is a F-progressive martingale under PP = PI . By the martingale represen-
tation theorem, there are now F-predictable processes {αI} and {βI} such that

eγtdAPt = βIt (dXt − aPt dt)− αIt (dNt − Λdt),

from which (24) follows, provided that αIt = wt− , which is directly implied by τ I ≤ inf{t ≥ 0 :
Nt = 1}.

C.2 Step II - Auxiliary Results

We first prove the following auxiliary Lemma

Lemma 6. Let τ ′ ≡ inf{t ≥ 0 : dNt = 1}. Fix a process {Dt}t<τ ′ and assume αIt = wt− for all
t ≥ 0, i.e. τ ≤ τ ′. Then, ΠM

DC ∈ ICMDC implies

αMt ≥ α(Dt−) ≡ 1

θr

(
exp(Dt−θr)− 1

)
> 0 and dcMs = 0 for s > τ.

Hence, both contracts ΠI
DC and ΠM

DC optimally end at the same time, in that τ = τ I = τM .

Proof. To start with, let us show the second part of the claim. First, suppose that there is a
stopping time τ ′′ with PI

(
τ ′′ < ∞ ∧ τ ′′ > τ

)
> 0, such that dcMτ ′′ < 0. Because after time τ

payments dcIs are no longer made and ws = 0 for s ≥ τ , the intermediary does not gain from
producing output, if possible at all, and therefore sets βMs = 0 for all s ≥ τ . Hence, the payment
dcMτ ′′ < 0 is deterministic, conditional on ΠI

DC being terminated. But then specifying at time τ a
payment dc̃τ ′′−εe

−rε rather than dcτ ′′ for arbitrary τ ′′− τ ≥ ε > 0 yields the same payoff Vτ for the
manager, but a strictly higher payoff Wτ for the intermediary, in that dcMτ ′′ < 0 cannot be optimal.
Repeating this reasoning implies that in optimum there cannot be any payment dcMs < 0 for s > τ ,
so dcMs ≥ 0

Second, suppose there exists a stopping time τ ′′ with PI
(
τ ′′ < ∞ ∧ τ ′′ > τ

)
> 0, such that

dcMτ ′′ > 0. However, by definition dcIs = 0 for all s ≥ τ . But from there it follows that

W ′τ ≤ wτ − EIτe−γ(τ ′′−τ)dcτ ′′ = −EIτe−γ(τ ′′−τ)dcτ ′′ < 0,

which violates limited liability. Hence, dcMs ≤ 0
By the previous arguments, it must be Dτ = 0, as Dτ > 0 induces a payment dcIs > 0 for

s > τ , which violates limited liability, and Dτ < 0 induces a payment dcIs < 0 for s > τ , which is
sub-optimal for the intermediary.

Next, the process {D} associated with strategy {α(Dt−)} evolves according to

dDt = dDt− −Dt−dNt = dDt− −Dt−1t=τ ′ ,

43



where we denote the continuous component of the stochastic integral in differential form by dDt− .
Consider any other strategy {α̂}. If it were α̂t < α(Dt−), then there is a process {ε} with εt > 0
such that the induced process {D′′} follows

dD′t = dDt− −
(
Dt− − εt)dNt = dDt− −

(
Dt− − εt)1t=τ ′ .

Hence, it occurs with positive probability that for the continuation value {W ′} under the alternative

W ′τ ′ = w′τ ′ −D′τ ′ = wτ ′ −Dτ ′ − ετ ′ < 0,

which violates limited liability. Therefore, the contract ΠI
DC is not credible as it induces a deviation

motive from the recommended savings such that ΠI
DC 6∈ ICIDC . It follows that αMt ≥ α(Dt−), which

concludes the proof.

To the end of this part, we would like to emphasize that even though the previous result implies
dcMs = Dτ = 0 for s > τ and αMt ≥ α(Dt−), it does not imply yet that αMt = α(Dt−). This is
because we did not rule out potential payments dcMτ < 0 yet (while we have shown dcMτ ≤ 0).

C.3 Step III - Proof of Proposition 2 and Lemma 3

Proof. In the following, let the intermediary’s strategy from the optimal contract ΠM
DC ∈ ICMDC

given ΠI
DC be represented by

S∗ =
(
{bP }, {aP }, {D}, {αM}

)
,

where

Dt = min{wt,D∗}, αMt = α(Dt−), bPt = bH ,

and aPt =
βIt b

P
t

δ + θrσ2δ2
≡ āβIt .

Additionally, consider an alternative strategy

S =
(
{bI}, {aI}, {D̂}, {α̂M}

)
under any incentive-compatible contract ΠM ∈ ICMDC given ΠI

DC . We verify the optimality of
ΠM
DC ∈ ICMDC and derive conditions for ΠI

DC ∈ ICIDC . In particular, we show that the strategy S∗
is indeed optimal if and only if ΠI

DC ∈ ICIDC .

Note that dZIt =
(
dXt − aIt dt

)
/σ is the increment of a standard Brownian Motion under the

measure PI = PaI . The profit from following the alternative strategy up to time t and then
switching to the proposed strategy is represented by the auxiliary gain process

GIt ≡ GIt (S) = D̂0− +

∫ t

0
e−γsdcIs −

∫ t

0
e−γs

[
h(bIs)− rD̂s−

]
ds

−
∫ t

0
e−γsdD̂s −

∫ t

0
e−γsdT̂s + e−γt(wt − D̂t−),
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where GI0− = w0− = w0. By Itô’s Lemma:

eγtdGIt =

[
h(bPt )− h(bIt ) + g(aPt |bPt )− g(aIt |bIt ) +

γrδσ2

2

((aPt )2

bt
− (aIt )

2

bIt

)
+ Λ(αMt − α̂Mt ) + (γ + Λ− r)

(
D̂t− −Dt−)

+ Λ
[

ln(1 + θrα̂Mt )/(θr)− D̂t−
]

+ βIt
(
aIt − aPt

)]
dt

+ βIt σdZ
I
t +

[
ln(1 + θrα̂Mt )/(θr)− αIt

](
dNt − Λdt

)
≡ µGt (S)dt+ βIt dZ

I
t +

[
ln(1 + θrα̂Mt )/(θr)− αIt

](
dNt − Λdt

)
Next, note that our regularity conditions, that {βI}, {αI}, {α̂M} are bounded, ensure that

EP
(∫ t

0
e−γsβIsdZs

)
= EP

(∫ t

0
e−γs

[
ln(1 + θrα̂Mt )/(θr)− αIs

]
(dNs − Λds)

)
= 0

It is then clear that by choosing aIt = aPt , bIt = bPt , D̂t = Dt and α̂Mt = αMt = α(Dt−) for all
t ≥ 0, the intermediary achieves that µGt (·) ≡ 0, in which case {GI} follows a martingale under PI .
Optional sampling implies that the stopped process {GIt∧τ} also follows a martingale. Whence,

max
S

EIGIt∧τ (S) ≥ EIGIt∧τ (S∗) = w0− .

Next, observe that the mapping

max
S

EIGt∧τ : [0,∞)→ R with t 7→ max
S

EIGt∧τ

is monotonically increasing in t and that our regularity conditions ensure that {GI} is bounded in
expectation for all strategies S and therefore also the stopped process. Consequently, we can take
limits to obtain that the intermediary’s actual payoff w′0− is given by:

w′0− ≡ max
S

EIGIτ (S) ≥ lim
t→∞

max
S

EIGIt∧τ (S) ≥ EIGIτ (S∗) = w0− .

The maximal value µGt (·) can take, is obtained by solving

max
St

µGt (St) with St =
(
aIt , b

I
t , α̂

M
t , D̂t

)
s.t. α̂Mt ≥ α(D̂t−);Dt ≤ wt,

where the first constraint follows from Step II of the proof and the second constraint arises due to
limited liability.23

First, due to

∂µGt (St)
∂α̂Mt

= Λ
(
− 1 +

1

1 + θrα̂Mt

)
< 0,

23Adopting the previously used notation, we can write S = {St}.
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the drift term is maximized µGt (St) for α̂Mt = α(D̂t−).
After plugging the optimal α̂Mt into the expression for µGt (St), one can verify that D̂t = Dt

solves the First Order Condition
∂µGt (St)
∂D̂t−

= 0, so that D̂t− = Dt− maximizes µGt (St), which proves

Proposition 2. It can be seen that the objective is concave in all control variables, so that the
First-Order Conditions are indeed a sufficient optimality criterion.

Next, going through the maximization, we see that

aIt =
βIt b

I
t

δ + θrσ2δ2

maximizes the drift µGt (St), given βIt , b
I
t . Furthermore, straightforward but tedious calculations

yield that bIt = bPt = bH maximizes the drift if and only if βIt ≥ β̄, where

β̄ ≡
(

λ(bH − bL)

ā− āL − δ
2

(
ā2

bH
− ā2L

bL

)
− θrσ2δ2

2

(
ā2

b2H
− ā2L

b2L

)) 1
2

=

(
λ(bH − bL)

ā− āL − δ
2

(
ā2

bH
− ā2L

bL

)) 1
2

; āL =
bL

δ + θrσ2δ2
.

Consequently, if and only if βIt ≥ β̄, each strategy S will make the process {GI(S)} a supermartingale
under PI and therefore also the stopped process {GIt∧τ (S)}, which implies

w0− = EIGI
0(S) ≥ EIGI

t∧τ (S)

for any t ≥ 0. Because our regularity conditions ensure that E|GI
τ | < ∞, we can take limits on

both sides, such that by the optional sampling theorem

w0− = EIGI0(S) ≥ lim
t→∞

EIGIt∧τ (S) = EI lim
t→∞

GIt∧τ (S) = EIGIτ (S)

and in particular

w0− = EGI0 ≥ max
S

EGIτ (S) = w′0− .

Hence, if and only if βIt ≥ β̄ for all t ≥ 0, it follows that w0− = w′0− and S = S∗ is the intermediary’s
optimal choice – i.e., the contract ΠM

DC is indeed optimal and ΠI
DC ∈ ICIDC , which concludes the

proof.

Appendix D: Appendix D: The Principal’s Problem (DC) - Proof
of Proposition 4

We proceed in three steps. In step I, we guess the optimal contract, the associated principal’s value
function, and the implied policies under the optimal contract. In step II, we show that the value
function is (strictly) concave. Finally, in step III, we verify that our guess in step I is indeed the
optimal contract, in that the value function represents the maximal payoff that the principal can
obtain.
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D.1 Step I - Value Function

The principal’s value function solves the following HJB equation when dcIt = 0:

(r + Λ)F (wt−) = max
βIt ,α

I
t

{
ΛF T (wt− − αIt ) + aIt + F ′(wt−)

[(
γwt− + ΛαIt

)
+ h(bH) + g(aIt |bH)

+ Λα(Dt−)−Dt−(γ + Λ− r) +
1

2
θr(σβMt )2

]
+

1

2
F ′′(wt−)

(
βIt σ

)2}
subject to

αIt ≤ wt− , βIt ≥ β̄, aIt = aIt (β
I
t ), F (0)−R = F ′(w)− 1 = F ′′(w) = 0.

In the following, we assume that the above HJB equation admits a unique, twice continuously
differentiable solution F (·) ∈ C2. A formal existence proof is beyond the scope of the paper and
therefore omitted.

Here, F T (·) denotes the principal’s value after a Poisson shock. It is evident that F T (wt−) =
R− wt− . Because F ′(wt−) ≥ −1, it follows that

∂F (wt−)

∂αIt
∝ (F T )′(wt− − αIt ) + F ′(wt−) = −1 + F ′(wt−) ≥ 0

and αIt = wt− is indeed optimal.

Further, one can verify that optimal βIt is given by

βIt = max{β̄, β∗(wt−)},

where

β∗(wt−) =
ā

−F ′(wt−)
(
δā2

bH
+ rθσ2 δ2ā2

b2H

)
− F ′′(wt−)σ2

=
1

−F ′(wt−)− F ′′(wt− )
ā σ2

,

assuming that F (·) is concave.

D.2 Concavity of the Value Function

Proof. To avoid clutter, we omit in this section time subscripts, if no confusion is likely to arise.
Using the envelope theorem and differentiating both sides of (18), we obtain

F ′′′(w) =
2

(βIσ)2
×

{
F ′(w)

[
r − γ − Λ

∂α(D)

∂w
+ (γ − r + Λ)

∂D
∂w

]
(D.1)

− F ′′(w)

[
(γ + Λ)w + h(bH) + g(aI |bH) + Λα(D)−D(γ + Λ− r) +

1

2
θr(σβM )2

]}
.

(D.2)
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Next, note that at the boundary F ′(w)− 1 = F ′′(w) = 0 implies that

F ′′′(w) ∝ γ − r + Λ
∂α(D)

∂w
− (γ − r + Λ)

∂D
∂w

.

If w > D∗, it readily follows that D is constant at w and therefore F ′′′(w) ∝ γ − r > 0.

If w ≤ D∗, then D = w and α(D) = 1
θr (exp(wθr)− 1). Thus,

F ′′′(w) ∝
(

exp(wθr)− 1
)
Λ > 0,

as w > 0. Continuity and F ′′′(w) > 0 imply now that, there exists ε > 0 such that F ′′(w) < 0 for
all w ∈ (w − ε, w).

Next, suppose w0 ∈ [0, w) with F ′′(w0) ≥ 0 and define w′ = sup{w ∈ [0, w) : F ′′(w) ≥ 0}. By
continuity of F ′′(·), it follows that F ′′(w′) = 0 and by the previous step w′ < w.

We further show that F ′(w′) < 0. Suppose to the contrary F ′(w′) ≥ 0. Then, by the HJB
equation

(r + Λ)F (w′) ≥ max
βI≥β̄

{
aI(βI) + F ′(w′)

[
(γ + Λ)w′ + h(bH)

+ g(aI |bH) + Λα(D)−D(γ + Λ− r) +
1

2
θr(σβM )2

]}
≥ FFB,

because F ′(w′) ≥ 0 and the drift of {w} is evidently positive due to w ≥ D. This yields the desired
contradiction. Thus, F ′(w′) < 0.

But F ′(w′) < 0 also implies that F ′′′(w′) > 0, and hence there is a value of w′′ > w′ with
F ′′(w′′) > 0, which contradicts the definition of w′. This completes the argument.

D.3 Verification

Proof. Let ΠI
DC ∈ ICIDC the optimal contract and consider any other incentive-compatible contract

ΠI ∈ ICIDC .
We show now that the value function F (·) solving (18) represents the principal’s optimal profit,

in that the contract ΠI
DC outlined in the Proposition is indeed optimal.

Let ΠI
DC ∈ ICIDC the optimal contract and consider any other incentive-compatible contract

ΠI ∈ ICIDC . It boils down to show that

F0(ΠI) ≤ F0(ΠI
DC) = F (w0−)

with equality if and only if ΠI = ΠI
DC .

Under any incentive-compatible contract ΠI = ({cI}, {b}, τ I) the process {w} solves (16) for
some predictable process {βI}. Define for t < τ I the auxiliary gain process

GPt = GPt (ΠI) =

∫ t

0
e−rs

(
dXs − dcIs

)
+ e−rtF (wt).
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By Itô’s Lemma:

ertdGPt =

{
− (r + Λ)F (wt−) + ΛF T (wt− − αIt ) + aIt (β

I
t ) + F ′(wt−)

[
γwt− + ΛαIt + h(bH)

+ g(aIt |bH) + Λα(Dt−)−Dt−(γ + Λ− r) +
1

2
θr(σβMt )2

]
+

1

2
F ′′(wt−)

(
βIt σ

)2}
dt

+
[
F T (ws− − αIs)− F (wt−)

]
(dNs − Λds)

−
(
F ′(wt−) + 1

)
dcIt + σ

(
1 + βIt F

′(wt−)
)
dZt

≡ µGt (ΠI)dt−
(
F ′(wt−) + 1

)
dcIt

+ σ
(
1 + βIt F

′(wt−)
)
dZt +

[
F T (ws− − αIs)− F (wt−)

]
(dNs − Λds).

By the HJB equation (18), the drift term is zero under the optimal contract ΠI
DC , i.e. µGt (ΠI

DC) =
0, while each other strategy/contract will make this term (weakly) negative, i.e µGt (ΠI) ≤ 0.
Because the process {cI} is almost surely increasing and the fact that F ′(wt−) ≥ −1, the term(
F ′(wt−)− 1

)
dcIt is (weakly) negative under any contract ΠI and zero under the optimal contract

ΠI
DC . Next, our regularity conditions ensure that {αI} and {βI} are almost surely bounded.

Therefore,

EP
(∫ t

0
e−rs(1 + βIsF

′(ws−)dZs

)
= EP

(∫ t

0
e−rs

[
F T (Ws− − αIs)− F (ws−)

]
(dNs − Λds)

)
= 0

for all t < τ . Therefore, {GP (ΠI)} follows a supermartingale, while {GP (ΠI
DC)} follows a martin-

gale under the measure PP and so do the stopped processes {GP (ΠI)t∧τI} and {GP (ΠI
DC)t∧τI}.

Hence,

F (w0−) = GP0 (ΠI) ≥ EPGPt∧τI (Π
I).

It then follows for any t that

F0(ΠI) = EP
(∫ τI

0
e−rs

(
dXs − dcIs

))
= EPGPτI (Π

I)

= EP
(
GPt∧τI (Π

I) + 1t≤τ

[ ∫ τI

t
e−rs(dXs − dcIs) + e−rτ

I
R− e−rtF (wt−)

])
= EPGPt∧τI (Π

I) + e−rtEPt 1t≤τ
(∫ τI

t
e−r(s−t)(dXs − dcIs) + e−r(τ−t)R+ F (wt−)

)
≤ F (w0−) + e−rt

(
FFB −R

)
,

where we used the supermartingale property and the fact that

EPt
(∫ τI

t
e−r(s−t)(dXs − dcIs) + e−r(τ−t)R ≤ FFB − wt−
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and

F (wt−) + wt− ≥ R⇐⇒ FFB − F (wt−)− wt− ≤ FFB −R.

From the above arguments, we readily obtain F0(ΠI) ≤ F (w0−) for all contracts ΠI ∈ ICIDC .
However, under the optimal contract ΠI

DC the principal’s payoff F0(ΠI
DC) achieves F (w0−), as the

above weak inequality holds in equality when t→∞. This concludes the proof.

Appendix E: The Intermediary’s and Manager’s Problems (DM)

E.1 The Manager’s Problem - Proof of Lemma 3

Proof. The proof is more or less identical to the proof of its counterpart under delegated contracting,
i.e. Lemma 1, albeit with slight notational adaption and is therefore omitted to conserve space.

E.2 The Intermediary’s Problem (DM) - Proof of Lemma 24

Proof. The martingale representation can be shown, replicating the arguments of the proof of
Lemma 2, and is therefore not given here.

We now prove the claim regarding incentive compatibility. Let bPt = bH and bP ≡ {bP } be the
proposed monitoring process by the optimal contract ΠI

DM , taking the manager’s contract ΠM
DM

as given, and bI ≡ {bI} be any other monitoring strategy. Further, let the associated managerial
effort under the proposed strategy be {aP } and under the alternative {aI}. We derive conditions
for ΠI

DM ∈ ICIDM , i.e., for bP representing the optimal strategy.
The profit from following the alternative strategy bI up to time t and then switching to the

proposed strategy bP is given by the auxiliary gain process

GIt ≡ GIt (bI) =

∫ t

0
e−γs

(
dcIs − h(bIs)

)
ds+ e−γtWt,

where GI0− = W0− = W0. By Itô’s Lemma:

eγtdGIt =
[
h(bH)− h(bIt ) + βIt

(
aIt − aPt

)]
dt+ βIt σdZ

I
t − αIt

(
dNt − Λdt

)
≡ µGt (bI)dt+ βIt dZ

I
t − αIt

(
dNt − Λdt

)
Next, note that our regularity conditions, i.e., {βI}, {αI} are bounded, ensuring that

EP
(∫ t

0
e−γsβIsdZs

)
= EP

(∫ t

0
e−γsαIs(dNs − Λds)

)
= 0

It is then clear that by choosing bIt = bPt for all t ≥ 0, the intermediary achieves µGt (·) ≡ 0, in
which case {GI} follows a martingale under PI . Optional sampling implies that also the “stopped
process” {GIt∧τ} follows a martingale. Whence,

max
bI

EIGIt∧τ (bI) ≥ EIGIt∧τ (bP ) = W0− .

Next, observe that the mapping

max
bI

EIGt∧τ : [0,∞)→ R with t 7→ max
bI

EIGt∧τ
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is monotonically increasing in t and that our regularity conditions ensure that {GI} is bounded in
expectation for all strategies bI and therefore also the stopped process. Consequently, we can take
limits to obtain that the intermediary’s actual payoff W ′0− is given by:

W ′0− ≡ max
bI

EIGIτ (bI) ≥ lim
t→∞

max
bI

EIGIt∧τ (bI) ≥ EIGIτ (bP ) = w0− .

The maximal value µGt (·) can take, is obtained through solving

max
bIt∈{bL,bH}

µGt (bIt ) with aIt =
βMt b

I
t

δ
, aIt =

βMt b
P
t

δ
, βMt =

δaPt
bH

.

As can be verified, bIt = bPt = bH maximizes µGt (·) if and only if βIt ≥
λbPt
aPt

.

Consequently, if and only if βIt ≥
λbPt
aPt

, each strategy bI will make the process {GI(bI)} a

supermartingale under the measure PI and therefore also the stopped process {GIt∧τ (bI)}, which
implies

W0− = EIGI
0(bI) ≥ EIGI

t∧τ (bI)

for any t ≥ 0. Because our regularity conditions ensure that E|GI
τ | < ∞, we can take limits on

both sides, such that by the optional sampling theorem

w0− = EIGI0(bI) ≥ lim
t→∞

EIGIt∧τ (bI) = EI lim
t→∞

GIt∧τ (bI) = EIGIτ (bI)

and in particular

W0− = EGI0 ≥ max
bI

EGIτ (bI) = W ′0− .

Hence, if and only if βIt ≥
λbPt
aPt

for all t ≥ 0, it follows that W0− = W ′0− and bI = bP is the

intermediary’s optimal choice, and ΠI
DM ∈ ICIDM , which concludes the proof.

Appendix F: The Principal’s Problem (DM) - Proof of Proposition
5

Proof. A formal existence proof of the solution is beyond the scope of the paper and concavity
can be established, utilizing essentially the same arguments as in the proof of Proposition 4. Both
proofs are therefore omitted.

Let (ΠI
DM ,Π

M
DM ) ∈ ICIDM × ICMDM be the optimal contracts, solving the principal’s problem

(19)-(21), and consider any other incentive-compatible contracts (ΠI ,ΠM ) ∈ ICIDM × ICMDM .
We show now that the value function F (·) = f(·) + CE(v0) with f(·) solving (26) represents

the principal’s optimal profit, in that the contracts (ΠI
DM ,Π

M
DM ) outlined in the Proposition are

indeed optimal. For the sake of exposition, we normalize without loss of generality CE(v0) to zero,
so that F (·) = f(·).

Consequently, we need to show that

F0(ΠI ,ΠM ) = f0(ΠI ,ΠM ) ≤ F0(ΠI
DM ,Π

M
DM ) = f0(ΠI

DM ,Π
M
DM ) = f(W0−)
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with equality if and only if (ΠI ,ΠM ) = (ΠI
DM ,Π

M
DM ).

Under any incentive-compatible contract ΠI = ({cI}, {b}, τ I) the process {W} solves (16)
for some predictable process {βI}. Further, let the contract ΠM be represented by the tuple
({cM}, {aP }, {SM}, τM ). Define for t < τ I the auxiliary gain process

GPt = GPt (ΠI ,ΠM ) = D0− +

∫ t

0
e−rs

(
dXs − dcIs − dcMs

)
+ e−rt(f(wt)−Dt−),

where {D} is implied by the savings under ΠM and savings under ΠM
DM imply Dt = 0. By Itô’s

Lemma:

ertdGPt =

{
− (r + Λ)f(Wt−) + ΛfT (Wt− − αIt ) + aMt + f ′(Wt−)

(
γWt− + ΛαIt

)
+ h(bH)

)
− g(aIt |bH)− ΛαMt + Λ ln(1 + θrαMt )/(θr)− 1

2
θr(σβMt )2 +

1

2
F ′′(Wt−)

(
βIt σ

)2}
dt

−
(
f ′(Wt−) + 1

)
dcIt + σ

(
1 + βIt f

′(Wt−)− βMt
)
dZt

+
(
fT (Wt− − αIt )− f(Wt−) + ln(1 + θrαMt )/(θr)

)
(dNt − Λdt)

≡ µGt (ΠI ,ΠM )dt−
(
f ′(wt−) + 1

)
dcIt

+ σ
(
1 + βIt f

′(wt−)− βMt
)
dZt

+
[
fT (Wt− − αIt )− f(Wt−) + ln(1 + θrαMt )/(θr)

]
(dNt − Λdt).

Note that all terms involving Dt cancel out, which implies that the choice of the savings does not
affect the principal’s payoff and is therefore without loss of generality.

Further, fT (Wt−) = R−Wt− is the principal’s value after Poisson termination and the optimal
contract sets αIt = −Wt− and αMt = 0.

By the HJB equation (26), the drift term is zero under the optimal contracts ΠI
DM ,Π

M
DM , i.e.

µGt (ΠI
DM ,Π

M
DM ) = 0, while each other strategy/contract will make this term (weakly) negative, i.e

µGt (ΠI ,ΠM ) ≤ 0. Because the process {cI} is almost surely increasing and the fact that f ′(wt−) ≥
−1, the term

(
f ′(wt−)− 1

)
dcIt is (weakly) negative under any contract ΠI and zero due under the

contract ΠI
DM .

Next, our regularity conditions ensure that {αM}, {αI}, {βI}, {βM} are bounded and therefore

EP
(∫ t

0
e−rs(1 + βIsf

′(ws−)− βMs
)
dZs

)
= EP

(∫ t

0
e−rs

[
fT (Ws− + αIs)− f(Ws−) + ln(1 + θrαMt )/(θr)

]
(dNs − Λds)

)
= 0

for all t < τ . Therefore, {GP (ΠI ,ΠM )} follows a supermartingale, while {GP (ΠI
DM ,Π

M
DM )}

follows a martingale under the measure PP and so do the stopped processes {GP (ΠI)t∧τI} and
{GP (ΠI

DM ,Π
M
DM )t∧τI}. Hence,

f(W0−) = GP0−(ΠI ,ΠM ) ≥ EPGPt∧τI (Π
I ,ΠM ).
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Then it follows for any t:

f0(ΠI ,ΠM ) = EP
(∫ τI

0
e−rs

(
dXs − dcIs − dcMs

))
= EPGPτI (Π

I ,ΠM )

= EP
(
GPt∧τI (Π

I ,ΠM ) + 1t≤τ

[ ∫ τI

t
e−rs(dXs − dcIs − dcMs ) + e−rτ

I
R− e−rtf(Wt−)

])
= EPGPt∧τI (Π

I ,ΠM )

+ e−rtEPt 1t≤τ
(∫ τI

t
e−r(s−t)(dXs − dcIs − dcMs ) + e−r(τ−t)R+ f(Wt−)

)
≤ f(W0−) + e−rt

(
FFB −R

)
,

where we used the supermartingale property and the fact that

EPt
(∫ τI

t
e−r(s−t)(dXs − dcIs − dcMs ) + e−r(τ−t)R ≤ FFB −Wt−

and

f(Wt−) +Wt− ≥ R⇐⇒ FFB − f(Wt−)−Wt− ≤ FFB −R.

From the above arguments, we readily obtain f0(ΠI ,ΠM ) ≤ f(W0−) for all contracts (ΠI ,ΠM ) ∈
ICIDM ×ICMDM . On the other hand, under the optimal contract (ΠI

DM ,Π
M
DM ) the principal’s payoff

f0(ΠI
DM ,Π

M
DM )) achieves f(W0−), as the above weak inequality holds in equality when t → ∞.

This concludes the proof.

Appendix G: Further Results

G.1 Proof of Corollary 1

In this proof, we abbreviate the optimal senstivities by βK(·) = βKDC(·) for K ∈ {I,M}, if no
confusion is likely to arise.

a) Proof. At the boundary, F ′(w)− 1 = F ′′(w) = 0 and therefore

aI(w) = āβI(w) =
ā

δā
bH

+ rθσ2 δ2ā
b2H

= ā = aSB

and βI(w) = 1, provided that β∗(w) = 1 > β̄.

b) Proof. First, we observe that due to F ′′(·) ≤ 0 and F ′(w∗) = 0, it follows by (D.2) that
F ′′′(w) > 0 on [w∗, w]. Hence, w′ ≤ w∗, such that F ′′′(w) > 0 for all w ≥ w′′′. This implies
that F ′′(·) is an increasing function to the right of w′′′. Because F ′′(w) = 0, β∗(w) increases,
whenever F ′′(w) + F ′′′(w)σ2/ā ≥ 0, and βI(w), βM (w) are proportional to each other, there
must be w′ with w > w′ ≥ w′′′, so that βI(w), βM (w) increase on [w′, w].

c) Proof. Note that β∗(w) is increasing whenever F ′′(w) + F ′′′(w)σ2/ā ≥ 0. As F ′′(w) = 0 <
F ′′′(w), there must be a value w′ ∈ [0, w], such that β∗(·) increases on [0, w) with β∗(w) =
1. Provided that β̄ < 1, there must be also a value w′′ with w > w′′ ≥ w′, such that
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βI(w) = β∗(w) > β̄ on (w′′, w], from which it follows that both sensitivities increase strictly
on (w′′, w]. Because βI(w) = 1 and βI(·) increases on (w′′, w], it follows that βI(w) ≤ 1 for
w ∈ (w′′, w], where the inequality is strict for w 6= w. Thus, a(w) = aDC(w) < ā = aSB for
all w ∈ (w′′, w).

G.2 Proof of Corollary 2

In this proof, we abbreviate ax(·) = a(·) and βKx (·) = βK for K ∈ {I,M} and x ∈ {DC,DM}, if
no confusion is likely to arise.

a) Proof. From (27) and the concavity of f(·), it follows that

∂(r + Λ)f(W )

∂a
= 1− aδ

bH
− rθσ2 δ

2a

b2H
− f ′′(W )

(
λbHσ

)2
a3

=
∂(r + Λ)fSB(a)

∂a
− f ′′(W )

(
λbHσ

)2
a3

≥ ∂(r + Λ)fSB(a)

∂a
,

where the inequality is strict if and only if W < W as f ′′(W ) = 0. Hence, a(W ) solving
∂f(W )
∂a = 0 satisfies

a(W ) ≥ aSB,

where the above inequality holds in equality if and only if W = W .

b) Proof. The IC-condition requires that βIDC(w) ≥ β̄ for all w ∈ [0, w]. Further, by part
a), we know that a(W ) ≥ aSB = ā, from where it follows by means of the intermediary’s
IC-constraint under “DM,” which binds in optimum, that

βIDM (W ) =
λbH
a(W )

≤ λbH
ā
≤ β̄ ≤ βIDC(w)

for any pair (W,w) ∈ [0,W ]× [0, w]. The inequality is strict if W < W .

c) Proof. By Corollary 1), there is w′′ ∈ (0, w), such that aDC(w) < aSB = ā for all w ∈ (w′′, w).
Hence,

βMDM (W ) =
δaDM (W )

bH
≥ βMDC(w) =

δaDC(w)

bH

for all (W,w) ∈ [0,W ]× (w′′, w], where the inequality is strict if W 6= W or w 6= w.

d) Proof. The first part of the claim readily follows from the IC-conditions βMt = δat/bH and

βMt =
δat
bH
⇐⇒ at =

βMt bH
δ

and βIt =
λbH
at

=
λδ

βMt
,

that is βIt , β
M are indirectly proportional to each other, utilizing the fact the intermediary’s

IC-condition is active in equilibrium.
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For the second part of the claim, we first use the envelope theorem and differentiate both
sides of (26), to obtain

f ′′′(W ) =
2

(βIσ)2
×
{
f ′(W )(r − γ)− f ′′(W )

[
(γ + Λ)W + h(bH)

]}
. (G.1)

It is evident that due to concavity, f ′(W ) ≥ 0 implies f ′′′(W ) > 0. Hence, there exists
W ′ ≤W ∗ with f ′(W ∗) = 0, such that f ′′′(W ) > 0 for all W ≥W ′.

By the implicit function theorem, we can differentiate both sides of the First-Order condition
∂f(W )
∂a = 0, to obtain

0 =
da(W )

dW

(
− δ

bH
− rθσ2 δ

2

b2H

)
− f ′′′(W )

(
λbHσ

)2
a(W )3

+ 3f ′′(W )

(
λbHσ

)2
a(W )4

da(W )

dW

=⇒ da(W )

dW
= − 1

− δ
bH
− rθσ2 δ2

b2H
+ 3f ′′(W )

(
λbHσ

)2
a(W )4

× f ′′′(W )

(
λbHσ

)2
a(W )3

< 0

provided that f ′′′(W ) > 0 and, in particular, for all W ≥ W ′. Because βMt is directly
proportional to at, the second part of the claim follows.

For the third part, it suffices to observe that (G.1) implies limγ↓r f
′′′(W ) > 0 for any W and

hence, for γ − r sufficiently small, it holds that f ′′′(W ) ≥ 0 for all W ≥ 0.

G.3 Optimality of Full Monitoring

Here, we provide necessary and sufficient conditions for full monitoring, bt = bH , to be part of the
optimal contract. We do so for all our different scenarios.

G.3.1 Delegated Contracting

It follows from the HJB equation (18) that bt = bH is optimal for all t ≥ 0 if and only if for all
w ∈ [0, w]:

(r + Λ)F (w) ≥ max
β̃I<β̄

{
a+

[
(γ + Λ)w + g(a|bL) + Λα

−D(γ + Λ− r) +
1

2
θr(σβ̃M )2

]
F ′(w) +

1

2
(β̃Iσ)2F ′′(w)

}
+ ΛR

s.t. a = β̃IaL =
β̃IbL

δ + θrσ2δ2
and β̃M =

δa

bL
.
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G.3.2 Delegated Contracting

It follows from the HJB equation (18) that bt = bH is optimal for all t ≥ 0 if and only if for all
W ∈ [0,W ]:

(r + Λ)f(W ) ≥ max
a≥0

[
a− g(a|bL) + f ′(W ) ((γ + Λ)W ) −1

2
θr(βMσ)2

]
+ ΛR

s.t. β̃M =
δa

bL
⇐⇒ a =

β̃MbL
δ

.

G.3.3 First- and Second-Best

Under first-best b = bH is optimal if and only if

max
a≥0

(
a− 1

2

δa2

bH
− h(bH)

)
≥ max

a≥0

(
a− 1

2

δa2

bL
− h(bL)

)
.

Under second-best b = bH is optimal if and only if

max
a≥0

(
a− 1

2

δa2

bH
− h(bH)− 1

2
θr

(
δa

bH
σ

)2
)
≥ max

a≥0

(
a− 1

2

δa2

bL
− h(bL)− 1

2
θr

(
δa

bL
σ

)2
)
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Supplementary Appendix

S.1 Solution for general discount rate ρ

In this section, we solve the problem in which the manager possesses a discount rate ρ not necessarily
equal to r.

We first prove the following auxiliary Lemma:

Lemma 7. Fix F-predictable processes {aM} and {bI} and let the probability measure induced by
{aM} be PM . Consider the problem

Vt = Vt({c̃M}) = max
{c̃Ms }s≥t

EMt
(∫ ∞

t
e−ρ(s−t)u(c̃Ms , a

M
s )ds

)
subject to d∆M

s = r∆M
s ds+ ĉMs ds− c̃Ms ds,∆M

t = 0 and lim
s→∞

∆M
s = 0 a.s.

The solution {c̃M} then satisfies

rVt = u(c̃Mt , a
M
t )

for all t ≥ 0 with a probability of one.

Proof. By standard arguments, the Euler equation reads

uc(c̃
M
s′ , a

M
s′ ) = EMs′ uc(c̃

M
s , a

M
s )e−(ρ−r)(s−s′)

for any t ≤ s′ < s, which implies that marginal utility uc(c̃
M
s , a

M
s )e−(ρ−r)s follows a martingale

under PM . Due to CARA-preferences it follows that marginal utility uc(·) is proportional to flow
utility u(·), so that u(c̃Ms , a

M
s )e−(ρ−r)s is also a martingale. Hence,

Vt = EMt
(∫ ∞

t
e−ρ(s−t)u(c̃Ms , a

M
s )ds

)
= EMt

(∫ ∞
t

e−ρ(s−t)e(ρ−r)se−(ρ−r)su(c̃Ms , a
M
s )ds

)
=

∫ ∞
t

e−ρ(s−t)e(ρ−r)sEMt
(
e−(ρ−r)su(c̃Ms , a

M
s )
)
ds

=

∫ ∞
t

e−ρ(s−t)e(ρ−r)se−(ρ−r)tu(c̃Mt , a
M
t )ds =

u(c̃Mt , a
M
t )

ρ− (ρ− r)
=⇒ rVt = u(c̃Mt , a

M
t ),

which was to show.

S.1.1 Sketch of the Solution under DC

As is usual, we introduce the left limit and note that the statement of Lemma 7 is valid when
replacing Vt by Vt− and we use this for ĉMt = c̃Mt .

Note that marginal utility is given by uc(ĉ
M
t , a

M
t ) = −θrVt− and marginal cost by ua(ĉ

M
t , a

M
t ) =

ga(a
M
t |bIt )θrVt− . Inverting the relation from the previous Lemma yields

ĉt
M = − ln(−θrVt−)

θ
+ g(aMt |bIt )⇐⇒ ĉt

M − g(aMt |bIt ) = − ln(−θrVt−)

θ
≡ rCE(Vt−).
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Importantly, we still assume that the agent consumes at each point in time the interest rate of his
certainty equivalent, in that we define CE(·) such that this holds.

Further, {V } solves the SDE

dVt = ρVt−dt− u(ĉMt , a
M
t )dt+ (−θrVt−)βMt

(
dXt − aIt dt

)
− (−θrVt−)αMt

(
dNt − Λdt

)
= (ρ− r)Vt−dt+ (−θrVt−)βMt

(
dXt − aIt dt

)
− (−θrVt−)αMt

(
dNt − Λdt

)
,

where we used the incentive condition with respect to savings, namely rVt− = u(ĉMt , a
M
t ). Because

we scale the volatility βMt by marginal utility −θrVt− , the incentive condition remains unchanged
compared to the baseline case ρ = r.

Next, Itô’s Lemma implies

dCEt =
θr

2
(βMt σ)2dt+

r − ρ
θr

dt+ ΛαMt dt+ βMt (dXt − aIt dt)−
ln(1 + θrαMt )

θr
dNt.

From there, we obtain for CEt = SMt +Dt due to limited commitment of the intermediary that

αMt = α(Dt−) ≡ 1

θr
(exp(θrDt−)− 1) > 0.

The intermediary chooses Dt = min{wt,D∗} with D∗ solving

(γ − r + Λ)− Λα′(D) = 0,

such that D∗ and the process {D} remain “unaffected” (in a qualitative sense) from the discount
rate change.

We can now write down the HJB-equation:

(r + Λ)F (w) = max
βI≥β̄

{
aI + F ′(w)

[(
γ + Λ

)
w + h(bH) + g(aI |bH) + Λα(D)

−D(γ + Λ− r) +
θr2

2r
(βMσ)2 +

r − ρ
θr

]
+

1

2
F ′′(w)

(
βIσ

)2}
+ ΛR,

subject to F (0)−R = F ′(w)− 1 = F ′′(w) = 0 and aI = βI ā.
Compared to the case where ρ = r, one additional term shows up in the HJB-equation, which

– importantly – does not qualitatively affect incentives and effort, i.e., it does not enter the FOC
wrt. to βI . The factor r−ρ

θr stems from the manager’s intertemporal consumption smoothing, in
that consumption tends to be frontloaded (backloaded) when ρ > r (ρ < r). It captures the effect
of shifting consumption (without any risk) with the interest rate r, the discount rate ρ, and the
elasticity of intertemporal substitution 1

θr . Evidently, this effect is positive if and only if r > ρ and
greater if the agent is less risk averse, i.e., for smaller θ. The manager’s certainty equivalent must
increase by this factor to encourage the agent to comply to the prescribed savings path.

We emphasize here that the discount rate differential ρ−r does not enter incentive compatibility
or optimality conditions, so that our key findings do not depend on the assumption of equal discount
rates.
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S.1.2 Sketch of the Solution under DM

We omit all further derivations and immediately give the HJB-equation:

(r + Λ)f(W ) = max
a≥0,βI≥λbH

a

[
a− g(a|bH)− r − ρ

θr
+ f ′(W ) ((γ + Λ)W + h(bH))

+
1

2
f ′′(W )(βIσ)2 − θr

2
(βMt σ)2

]
+ ΛR,

subject to f(0) − R = f ′(w) − 1 = f ′′(w) = 0 and βM = δa/bH . Again, compared to the case in
which ρ = r, only one additional term shows up in the HJB equation, which does not affect the
FOC with respect to a and therefore does not qualitatively affect incentives and effort.

Looking at the above HJB-equation, it becomes clear that the principal’s profit increases in ρ,
everything else remaining unchanged. The rationale for this result is as follows. When ρ is high, the
agent cares more about the present and current consumption and thus has strong incentives to bor-
row. To maintain incentive compatibility with respect to savings, the principal therefore promises
high consumption today and low consumption at any future time, which allows the principal to
provide the promised value in a cheap way.

As before, it becomes evident that the discount rate differential does not qualitatively affect
findings about incentives and/or effort.

S.2 Integration by parts

We provide the details for rewriting the continuation value Wt = wt −Dt by means of integration
by parts, so that

Wt = EIt
[ ∫ τ

t
e−γ(s−t)dcIs−

∫ τ

t
e−γ(s−t)[h(bPs )+(γ+Λ−r)Ds−

]
ds−

∫ τ

t
e−γ(s−t)dTs

]
−Dt. (S.2)

Proof. Assume that αMt = α(Dt−) and that the intermediary’s contract is terminated upon dNt = 1,
that is τ ≤ inf{t ≥ 0 : dNt = 1}.

In general, the process {D} can we written as the sum of an almost-surely continuous, pre-
dictable process {L} and a point process {P}, in that

Dt = L0 +

∫ t

0
dLs + P0 +

∫ t

0
dPs = Lt + Pt.

Or in our specific case, we may write

Dt =

∫ t

0
dDs− −

∫ t

0
Ds−dNs = Dt− −Dt−1t=τ = Dt−1t<τ =⇒ Dt1t<τ∧Nτ=0 = Dt− ,

because a Poisson shock brings {D} down to zero and in particular Dτ = 0. Integration by parts
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for t < τ now yields∫ τ

t
e−γ(s−t)dDs = e−γ(τ−t)Dτ− −Dt− + γ

∫ τ

t
e−γ(s−t)Ds−ds−

∫ τ

t
e−γ(s−t)Ds−dNs

= e−γ(τ−t)Dτ− −Dt + γ

∫ τ

t
e−γ(s−t)Ds−ds

−
∫ τ−

t
e−γ(s−t)Ds−dNs − e−γ(τ−t)Dτ−1Nτ=1

= γ

∫ τ

t
e−γ(s−t)Ds−ds−Dt −

∫ τ−

t
e−γ(s−t)Ds−dNs,

due to Dτ− = Dτ = 0 in case Nτ = 0. Note that∫ τ−

t
e−γ(s−t)Ds−ds =

∫ τ

t
e−γ(s−t)Ds−ds =

∫ τ

t
e−γ(s−t)Dsds

because the processes {Dt−} and {Dt} do not coincide on at most finitely many points, which is a
Lebesgue null set and therefore does not change the value of the integral.24

The claim follows now from the so-called “smoothing formula.” Define for appropriate ∆ and
a given pair t < τ the set Π ≡ {s+ n∆ : n ∈ N ∧ t ≤ s+ n∆ < τ}.

EIt
(∫ τ−

t
e−γ(s−t)Ds−dNs

)
= EIt

∑
t≤s<τ

[
e−γ(s−t)Ds−(Ns −Ns−)

]
= lim

∆↓0

∑
s∈Π

EItEIs−∆

[
e−γ(s−t)Ds−∆(Ns −Ns−∆)

]
= lim

∆↓0

∑
s∈Π

EIt
[
e−γ(s−t)Ds−∆EIs−∆(Ns −Ns−∆)

]
= EIt lim

∆↓0

∑
s∈Π

[
e−γ(s−t)Ds−∆Λ∆

]
= EIt

(∫ τ−

s
e−γ(s−t)ΛDs−ds

)
,

where we used the towering property of conditional expectation, Ft ⊆ Fs−∆ and the fact that
EIs(Ns+∆ −Ns) = Λ∆. We can readily combine our results to obtain

EIt
∫ τ

t
e−γ(s−t)dDs = (γ + Λ)EIt

(∫ τ

t
e−γ(s−t)Ds−ds

)
−Dt,

which was to show.

Alternatively, define for s ≥ t the probability measure P̃I via the Radon Nikodyn derivative

dP̃I

dPI
|Ft = eΛ(s−t)

24Here, all integrals are to be understood in the Lebesgue-Stieltjes sense. For convenience we write
∫ s
t
dXs for∫

[t,s]
dXs and

∫ s−
t

dXs for
∫
[t,s)

dXs for any process integrable process {X}.
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and apply Girsanov’s theorem to write

Wt ≡ EIt
(∫ τ

t
e−γ(s−t)dcIs −

∫ τ

t
e−γ(s−t)h(b̂s)ds−

∫ τ

t
e−γ(s−t)dcMs

)
= ẼIt

(∫ τ

t
e−(γ+Λ)(s−t)dcIs −

∫ τ

t
e−(γ+Λ)(s−t)h(b̂s)ds−

∫ τ

t
e−(γ+Λ)(s−t)dcMs

)
,

where the operator ẼIt (·) denotes the expectation conditional on Ft, taken under the measure P̃I .
In particular, integration by parts and the change of measure collectively yield

EIt
(∫ τ

t
e−γ(s−t)dDs

)
= ẼIt

(∫ τ

t
e−(γ+Λ)(s−t)dDs

)
= ẼIt

(
(γ + Λ)

∫ τ

t
e−(γ+Λ)(s−t)Ds−ds

)
−Dt = EIt

(
(γ + Λ)

∫ τ

t
e−γ(s−t)Ds−ds

)
−Dt,

because of Dτ = 0. The result follows upon noticing that

dcMt = dTt + rDt−dt− dDt.

S.3 A Model with Risk-Averse Intermediary

In this section, we solve the model for the case in which both agents, the manager and the interme-
diary, have CARA preferences and are not protected by limited liability. For simplicity, we assume
that all players discount at the market interest rate r and that the intermediary and the manager
can privately save and borrow. Further, we denote by θI > 0 the risk aversion coefficient of the
intermediary and by θM > 0 the risk-aversion coefficient of the manager. Let us focus on incentive-
compatible contracts and for simplicity normalize the manager’s and intermediary’s outside option
in monetary terms to zero.

By standard arguments, one can see that the problem is stationary and that the principal’s
value under delegated contracting is given by

f̄DC = max
βI

1

r + Λ

[
a− 1

2

δa2

bH
− h(bH)− 1

2
θMr

(
σβM )2

)
− 1

2
θIr
(
σβI

)2]
s.t. βMDM = βM =

δa

bH
, a = āβI = aDC and βIDC = βI ≥ β̄.

The first order conditions with respect to βI read

∂f̄DC

∂βI
= 0⇐⇒ ā− δā2/bHβ

I − θMrσ2δ2ā2/b2Hβ
I − θIrσ2βI = 0,

so that βIDC = βI = max{β̄, β∗} where

β̄ ≡
(

λ(bH − bL)

ā− āL − δ
2

(
ā2

bH
− ā2L

bL

)
− θrσ2δ2

2

(
ā2

b2H
− ā2L

b2L

)) 1
2

=

(
λ(bH − bL)

ā− āL − δ
2

(
ā2

bH
− ā2L

bL

)) 1
2

; āL =
bL

δ + θrσ2δ2
.
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and

β∗ =
ā

δā2/bH + θMrσ2δ2ā2/b2Hβ
I + θIrσ2

=
1

1 + θIrσ2

ā

< 1,

so that aDC = βI ā < ā.
Likewise, under delegated monitoring, the principal’s value under delegated contracting is given

by

f̄DM = max
βI ,βM

1

r + Λ

[
a− 1

2

δa2

bH
− h(bH)− 1

2
θMr

(
σβM )2

)
− 1

2
θIr
(
σβI)2

)]
s.t. βMDM = βM =

δa

bH
and βIDM = βI ≥ λbH

a
.

It is obvious that the IC-constraint for the intermediary is just binding, in that βI = λbH
a , which

yields the FOC wrt. to effort a:

∂f̄DM

∂a
=
∂f̄SB

∂a
+

1

r + Λ
θIr(σλbH)2/a3 = 0.

Optimal effort aDM = a solves the above equation. Because ā solves ∂f̄SB

∂a = 0, it follows that
aDM > ā > aDC and therefore βMDM > βMDC . That is, the manager receives higher incentives under
delegated monitoring.

Furthermore, under the assumption (on exogeneous model parameters) β̄ ≥ λbH
ā , we have that

βIDM =
λbH
aDM

<
λbH
ā
≤ β̄ ≤ βIDC .

Hence, the intermediary receives higher incentives under delegated contracting.

62



References

Acharya, V. V., Gottschalg, O. F., Hahn, M., and Kehoe, C. (2012). Corporate governance and

value creation: Evidence from private equity. The Review of Financial Studies, 26(2):368–402.

Aghion, P. and Tirole, J. (1997). Formal and real authority in organizations. Journal of Political

Economy, 105(1):1–29.

Alissa, W. (2015). Boards’ response to shareholders’ dissatisfaction: The case of shareholders’ say

on pay in the uk. European Accounting Review, 24(4):727–752.

Bainbridge, S. (2008). Remarks on say on pay: an unjustified incursion on director authority.

UCLA School of Law, Law-Econ Research Paper No. 08-06.

Bebchuk, L., Friedman, A., and Friedman, W. (2007). Statement Before the House Committee

on Financial Services. Empowering Shareholders on Executive Compensation: H.R. 1257, the

Shareholder Vote on Executive Compensation Act. Hearing, 110th Congress, first session, March

8. US Government Printing Office, Washington, DC.

Bhattacharya, S. and Pfleiderer, P. (1985). Delegated portfolio management. Journal of Economic

Theory, 36(1):1–25.

Bhattacharyya, S. and Lafontaine, F. (1995). Double-sided moral hazard and the nature of share

contracts. The RAND Journal of Economics, 26(4):761–781.

Biais, B., Mariotti, T., Plantin, G., and Rochet, J.-C. (2007). Dynamic security design: Convergence

to continuous time and asset pricing implications. The Review of Economic Studies, 74(2):345–

390.

Biais, B., Mariotti, T., Rochet, J.-C., and Villeneuve, S. (2010). Large risks, limited liability, and

dynamic moral hazard. Econometrica, 78(1):73–118.

Brav, A., Jiang, W., Partnoy, F., and Thomas, R. (2008). Hedge fund activism, corporate gover-

nance, and firm performance. The Journal of Finance, 63(4):1729–1775.

Burkart, M., Gromb, D., and Panunzi, F. (1997). Large shareholders, monitoring, and the value of

the firm. The Quarterly Journal of Economics, 112(3):693–728.

Coates, J. (2009). Statement before the US Senate Committee on Banking, Housing and Ur-

ban Affairs Subcommittee on Securities, Insurance and Investment. Protecting Shareholder and

Enhancing Public Confidence by Improving Corporate Governance. Hearing, US Senate 111th

Congress, First Session, July 29. US Government Printing Office, Washington, DC.

Correa, R. and Lel, U. (2016). Say on pay laws, executive compensation, pay slice, and firm

valuation around the world. Journal of Financial Economics, 122(3):500–520.

63



Cronqvist, H. and Fahlenbrach, R. (2013). Ceo contract design: How do strong principals do it?

Journal of Financial Economics, 108(3):659–674.

DeMarzo, P. M. and Fishman, M. J. (2007). Optimal long-term financial contracting. The Review

of Financial Studies, 20(6):2079–2128.

DeMarzo, P. M., Fishman, M. J., He, Z., and Wang, N. (2012). Dynamic agency and the q theory

of investment. The Journal of Finance, 67(6):2295–2340.

DeMarzo, P. M. and Sannikov, Y. (2006). Optimal security design and dynamic capital structure

in a continuous-time agency model. The Journal of Finance, 61(6):2681–2724.

DeMarzo, P. M. and Sannikov, Y. (2016). Learning, termination, and payout policy in dynamic

incentive contracts. The Review of Economic Studies, 84(1):182–236.

Di Tella, S. and Sannikov, Y. (2016). Optimal asset management contracts with hidden savings.

Working Paper.

Diamond, D. W. (1984). Financial intermediation and delegated monitoring. The Review of Eco-

nomic Studies, 51(3):393–414.
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