Quantitative Methods (M.Sc)
UNIVERSITY OF PIRAEUS
DEPARTMENT OF BANKING AND FINANCIAL MANAGEMENT
Postgraduate Program (M.Sc.) in Banking and Finance
Lesson: Quantitative Methods
Instructor: Dr. Panagiotis Samartzis
Bibliography:
- Chris Brooks, “Introductory Econometrics for Finance”, Cambridge University Press , 2019.
- Ενοποιημένες ποσοτικές μέθοδοι στα Οικονομικά, Εκδόσεις Διπλογραφία, 2019.
- Teacher notes.
Other bibliography:
- Helmut Lutkepohl, Markus Kratzig, “Applied Econometrics”, Cambridge University Press, 2008.
Course Description
Introduction
- Descriptive and Inductive Statistics.
- Deterministic and stochastic phenomena.
- Modeling principles.
Probabilities, random variables and probability distributions
- The concept of random and non-random sampling.
- Probability theory, random experiments, probability space.
- The concept of random variable, the cumulative probability distribution function, the probability density function and independence.
- Conditional Probability & Bayes Theorem.
Inductive Statistics
- Estimator, finite sample properties, asymptotic properties.
- Valuation methodology. Method of moments, method of maximum probability.
- Hypothesis testing and confidence intervals, the size and power of a statistical testing.
- Properties of estimators, Gauss-Markov Theory, Distributions of estimators.
- Applications using the Eviews program.
Regression
- The data generating process and regression models.
- Linear regression models, simple regression models, the classical multiple regression model, auto regressive models.
Simple Linear Regression Model
- Main assumptions.
- Heteroscedasticity, autocorrelation, multicolinearity.
- Statistical significance, confidence intervals, F-test, R-squared.
- Forecasts using regression models.