Quantitative Methods (M.Sc)

21-06-18 web.xrh 0 comment

UNIVERSITY OF PIRAEUS

DEPARTMENT OF BANKING AND FINANCIAL MANAGEMENT

Postgraduate Program (M.Sc.) in Banking and Finance

Lesson: Quantitative Methods

Instructor: Dr. Panagiotis Samartzis

 

Bibliography:

  • Chris Brooks, “Introductory Econometrics for Finance”, Cambridge University Press , 2019.
  • Ενοποιημένες ποσοτικές μέθοδοι στα Οικονομικά, Εκδόσεις Διπλογραφία, 2019.
  • Teacher notes.

 

Other bibliography:

  • Helmut Lutkepohl, Markus Kratzig, “Applied Econometrics”, Cambridge University Press, 2008.

Course Description

Introduction

  • Descriptive and Inductive Statistics.
  • Deterministic and stochastic phenomena.
  • Modeling principles.

Probabilities, random variables and probability distributions

  • The concept of random and non-random sampling.
  • Probability theory, random experiments, probability space.
  • The concept of random variable, the cumulative probability distribution function, the probability density function and independence.
  • Conditional Probability & Bayes Theorem.

Inductive Statistics

  • Estimator, finite sample properties, asymptotic properties.
  • Valuation methodology. Method of moments, method of maximum probability.
  • Hypothesis testing and confidence intervals, the size and power of a statistical testing.
  • ​​Properties of estimators, Gauss-Markov Theory, ​​Distributions of estimators.
  • Applications using the Eviews program.

 

Regression

  • The data generating process and regression models.
  • Linear regression models, simple regression models, the classical multiple regression model, auto regressive models.

Simple Linear Regression Model

  • Main assumptions.
  • Heteroscedasticity, autocorrelation, multicolinearity.
  • Statistical significance, confidence intervals, F-test, R-squared.
  • Forecasts using regression models.